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PREFACE 

This report presents an analysis of the libration and vibration of a 

passive communications satellite known as PACSAT. Previous related Rand 
---- -

reports include N-1780-ARPA, PACSAT: A Passive Communication Satellite 
I . 

for Survivable Command and Control, November 1981, and R-2920-ARPA, 

Electromagnetic Properties and Communication Characteristics of PACSAT 

August 1982. 

The research is sponsored by the Strategic Technology Office, 

Defense Advanced Research Projects Agency, under the supervision of Dr. 

Sherman Karp. It is an element of a broad range of strategic 

communications studies being conducted for ARPA by Rand. 
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SUMMARY 

The passive communications satellite known as PACSAT has been under 

consideration for many years. The satellite could be useful for command 
' 

and control of strategic forces because it can provide survivable 

communications. Many studies have shown that it can provide low-to

medium data rates at distances up to a few thousand miles between 

moderate sized mobile terminals. 

PACSAT consists of a uniform linear array of electromagnetically 

resonant spheres which provides a very large scattering cross section in 

a particular direction. It is nominally vertical and straight, and is 

maintained in that condition by gravity-gradient stabilization. Previous 

studies have shown that verticality must be maintained to 1.5 deg, and 

straightness to 1/8 wavelength (.5 em at the desired operating 

frequency). This report addresses the effects of various disturbing 

mechanical forces on verticality and straightness. Certain of these 

effects are quite strong, and it is shown in particular that 

micrometeoroid impacts and thermal bending effects cause motions which 

far exceed the permissible displacements. 

The general problem is formulated, with gravity-gradient tension and 

elastic forces regarded as the principal forces, and other forces treated 

as perturbations. The motion is separated into center-of-mass motion, 

rigid-body libration around the local vertical, and vibration transverse 

to the libration. The fundamental modes of PACSAT in a circular orbit 

with no external forces are studied in detail. The motion is stable, 

undamped, and maintains the original amplitude, so the verticality and 

straightness requirements must be satisfied by the initial conditions, a 

very difficult task. 

The effect of orbital ellipticity is the first perturbation studied. 

It induces an in-plane libration of amplitude in radians equal to the 

eccentricity. The out-of-plane libration is unstable, but the exponent 

is fourth order in the eccentricity, and the instability takes thousands 

of years to develop. There is no significant effect on vibration. 
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Earth oblateness effects are studied next. The precession of the 

orbital plane couples the in-plane and out-of-plane motions, producing a 

resonant excitation of the out-of-plane motion, with an amplitude 

proportional to the product of eccentricity and inclination for near

circular, near-equatorial orbits. Despite the resonance, the 

displacement is small. There are no discernible effects on vibration. 

Lunar and solar gravity and solar radiation pressure all prove to be 

negligible. 

Micrometeoroid impacts produce important vibrations. It is shown 

that a particle of a few micrograms mass at meteoric velocity can cause 

deflections which exceed the straightness requirements, and the impact of 

such a particle can be expected as often as once a month. Even if the 

satellite is initially vertical and straight, it will not be able to 

maintain its condition under expected meteoric bombardment. 

Thermal bending proves to be the most important cause of vibration. 

The solar heat input causes differential expansion, which makes PAGSAT 

curve away from the sun. Eclipsing by the earth, or shadowing within 

PACSAT, causes the solar input to vary so as to excite the lowest 

vibrational frequency of PACSAT, which is at approximately three times 

orbital frequency. The resonance causes large displacements. Unless the 

absorptivity of the surfaces is kept below .0007, which is well beyond 

the current state of the art, the straightness requirements cannot be 

met. 

It is concluded that the flexural misbehavior of PACSAT in orbit is 

such that it is most improbable that the present design (unsupport~d 

linear array) can perform its communications function. 
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I. INTRODUCTION 

The survivability and endurance of the communications systems used 

for the command and control of strategic forces are vital issues. 

Concern that existing systems may be vulnerable, despite their diversity 

and specialized design, has led to numerous suggestions for their 

improvement. Among these is a proposal by Yater[!] for an advanced 

passive communications satellite concept. If it proves practical, this 

design, now called PACSAT, may be useful for the command and control of 

strategic forces because it can provide survivable point-to-point 

communication at low-to-medium data rates at distances up to a few 

thousand miles between moderate sized mobile terminals. 

The PACSAT concept was investigated at the Stanford Research 

Institute[2]~ and in a recent treatment by Bedrosian[3]. PAGSAT consists 

of a uniform linear array of scatterers whose axis is nominally pointed 

toward the center of the earth. Gravity-gradient stabilization is used 

to keep the array erect. When illuminated by a transmitter on the earth, 

the array scatters energy much like a diffraction grating. If the angle 

of incidence (the angle between the line of sight from the transmitter to 

the array and the array axis) is denoted by ~. the first-order grating 

lobe is directed back toward the earth at a half-angle, e, given by the 

relation: 

s(cosa + cos~) = A 1.1 

where s is the element spacing and A is the wavelength. 

The region illuminated by the grating lobe on the earth will be a 

narrow annulus. A communication link is established by choosing the 

wavelength so the annulus includes the desired receiver. The radar cross 

section~ available bandwidth, and other communication parameters are 

calculated in Ref. 3, where it is also shown that coverage considerations 

lead to placing PACSAT in a nominally circular equatorial orbit at an 

altitude of 1-1.5 earth radii. 
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Reference 3 calculates the limits on PACSAT performance caused by 

departure from the ideal configuration. Effects considered are near

field effects (PACSAT, at a length of 1,500 m, a wavelength of 3.75 em, 

and the indicated altitude, is in the transition zone between Fresnel and 

Fraunhofer diffraction), librational motion about the vertical, and 

distortion of the array from perfect straightness into a parabolic shape. 

The reduction of the radar cross section is calculated. Upon extracting 

the information from the extensive curves of Ref. 3, the requirements for 

verticality and straightness are obtainad and shown in Table 1. 

Thus, if the radar cross-section loss is not to exceed 1 dB, the 

array must maintain verticality to within 1.5 deg, and must be straight 

to about 0.5 em at the wavelength of interest. For an array length of 

1,500 m, if the parabola be approximated by an arc of a circle, the 

radius of curvature of the circle must exceed 50,000 km, about eight 

times the radius of the earth. This is clearly a very difficult task, 

since the straightness must be maintained in the presence of a variety of 

disturbing forces. If the distorted shape were other than parabolic, the 

limitation would be applied to the rms displacement. The purpose of this 

report is to investigate the phenomena and ascertain whether PACSAT can 

meet the flexural requirements. 

The behavior of PACSAT in orbit is closely related to the theory of 

the attitude dynamics of satellites with flexible appendages. This 

subject has received extensive treatment in the literature. A review 

article by Modi{4], written in 1974, lists over 200 references, and there 

have been numerous publications since. Although PACSAT at 1,500 m length 

Reduction in 
Cross Section (dB) 

1 
3 

10 

Table 1 

PAGSAT FLEXURAL REQUIREMENTS 

Departure from 
Vertical (deg) 

1.5 
2.0 
2.7 

Maximum Parabolic 
Displacement (wavelengths) 

.127 

.217 

.401 
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is longer than any satellite ever flown, it is most similar to the Radio 

Astronomy Explorer satellite (1968-SSA), which was placed in a 5,850 km 

altitude circular orbit in July 1968 and carried four 228 m extensible 

booms. The dynamics of that satellite have been well studied[S, 6]. 

More recently, the motion of a gravity-gradient stabilized satellite 

driven by orbital eccentricity has been treated by Hablani and 

Shrivastava[7] (see also comments by Alfriend[8]), and the stability 

diagram for the Mathieu equation which governs the dynamics of a flexible 

body has been investigated by Kumar and Bainum[9] (see also comments by 

MacNeal[lO]). 

The dynamics of PACSAT in orbit involve the motion of the body 

arising from at least the following causes: 

1. Earth's central gravitational field 

2. Elastic forces of tension and bending 

3. Effects of initial conditions 

4. Ellipticity of orbit 

5. Earth oblateness effects 

6. Solar and lunar gravity 

7. Solar radiation pressure 

8. Micrometeoroid impacts 

9. Thermal bending 

The first two of these will be regarded as fundamental, and all of 

the rest will be treated as perturbations. It will be shown that the 

most important effects which cause libration about the vertical are 

initial conditions, ellipticity, and oblateness, while the most important 

causes of departure from straightness are initial conditions, 

micrometeoroid impacts, and thermal bending. In particular, thermal 

bending effects are so serious that it is unlikely that the present 

design of PACSAT can even approach the straightness requirements. 

A partial study of PACSAT dynamics has been conducted by Burke[ll], 

who considered the fundamental mode problem, but did not treat the 

various forces. Some of Burke's ideas are included in this report. 
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The several topics are investigated in the following sections. The 

dynamic problem is formulated in general in Section II. Several mutually 

consistent assumptions are employed to simplify the equations. The 

fundamental modes of the simplest problem--circular orbit and only 

gravity gradient and elastic forces--are found in Section III. This 

proves to be a mathematical problem involving singular perturbations and 

rather delicate analysis. All modes have real frequencies, so the 

unperturbed problem is stable for small motions (an assumption used in 

the analysis). The effects of initial conditions are evaluated at this 

point. 

Ellipticity is treated in Section IV. It is shown that small 

ellipticity drives the in-plane motion to produce a libration at the 

orbital frequency with amplitude equal to the eccentricity. The 

frequencies of the librational modes are changed slightly. The out

of-plane equation is proved to be unstable, but the time for instability 

effects to appear is over 4,500 years. There is no significant effect on 

vibration. 

Earth oblateness effects are studied in Section V. Coupling between 

equations excites a librational resonance in the out-of-plane motion for 

near-circular, near-equatorial orbits, but the amplitude is small, being 

proportional to the product of eccentricity and inclination. In Section 

VI, solar and lunar gravity and solar radiation pressure are 

investigated, and all prove to have small effects. 

Micrometeoroid impacts are studied in Section VII. Assuming the 

particle is small enough that it does not destroy the fntegrity of 

PACSAT, the effect of micrometeoroid impact is closely related to the 

effect of initial conditions, since the impact is equivalent to a point 

discontinuity in velocity. It is shown that the effect on straightness 

may be quite significant, since a meteoric particle with a few micrograms 

mass can produce vibratory motion comparable to the requirements, and 

such particles may be encountered as often as once a month. 

Thermal bending effects are considered in Section VIII. The solar 

heat input causes differential expansion, which makes PACSAT curve away 

from the sun. Eclipsing by the earth, or shadowing within PACSAT, causes 

the solar input to vary in time to excite the lowest vibrational mode of 
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PACSAT as a resonance, and the resulting displacement is major. Unless 

the absorptivity of the material can be reduced below .0007, a very 

difficult task, the straightness requirements cannot be met. 

Finally, conclusions appear in Section IX. 
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II. FOR.NULATION OF THE GENERAL PROBLEM 

The geometrical configuration is shown in Fig. 1. PACSAT is in a 

near-circular, near-equatorial orbit. It is nominally vertical and 

straight, but is actually somewhat tilted and disturbed into a sinuous 

shape. The figure is not to scale, since PACSAT is short compared to the 

orbit radius and the distortions are small. 
+ 

The vector r is the radius 

vector from the center of the earth to a point P on PACSAT, and the 

directed length s i$ the distance from the center of mass C to the point 

on the undistorted axis of PACSAT corresponding to P. With L the length 

of PACSAT (1,500 m), the range of s is from -L/2 to L/2. 

A series of assumptions is made to permit analytic treatment of the 

problem: 

! 

'-

'c,m. 

---

Fig. 1 - PACSAT in circular equatorial orbit 

I 
' 
' ~-
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1. Since the ratio of the length of PACSAT (1,500 m) to the radius 

of the orbit (-13,000 km)[ i~--on the order_ of 10-4 , all 

expressions will be expanded in powers of this ratio, and only 

first-order terms kept. 

2. All slopes and curvatures are small, so in forming the 

Lagrangian, only second-order terms will be kept. This is 

consistent with the requirement of small displacements 

established in Section I, and leads to linear differential 

equations. 

3. All forces other than gravity and elastic forces may be treated 

as perturbations. This assumption will be tested as each force 

is considered . 

4. The various effects will be considered mutually independent, 

unless they can interact to produce resonances. 

5. The PACSAT structure is inextensible. This is consistent with 

the properties of steel. A consequence of this assumption is 

that there are no longitudinal vibrations. 

6. The PACSAT rod structure is very long compared with its 

diameter. Hence, the axial moments of inertia may be neglected. 

Further, there will be no torsional vibrations. 

7. The PACSAT structure is uniform, and the motion is continuous. 

8. There is no damping present. Although PACSAT contains "sticky 

hinges," the gravity-gradient tension will cause them to lock. 

It is easily shown that the internal friction in steel is not 

sufficient to provide appreciable damping. 

Under these assumptions, the equations of the system may be 

formulated and simplified. The total motion may be separated into three 

parts, the motion of the center of mass, a rigid-body libration about the 

center of mass, and vibrations transverse with respect to the libration. 

The formulation will use the Lagrangian technique. Although other 

methods could have been employed, the Lagrangian is the most convenient 

when thermal bending is treated. 
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The structure of PACSAT in the undistorted state is depicted in 

Fig. 2. The central steel rod, with a diameter of .132 em, carries 80,001 

spheres. These are spaced 1.875 em between centers (1/2 wavelength at 

3.75 em), and have radius .595 em (3.75/2n)~ the radius at which the 

radar scattering of the sphere is a maximum. The spheres may be solid 

aluminum, through-drilled, or they may be plastic, to save weight, coated 

with aluminum to provide radar reflectivity. 

Following Burke[ll], we assume that the massive solid spheres 

prevent bending of the rod within the sphere. Hence, the effective 

length of the rod bearing solid spheres is taken to be .685 x 1,500/1.875 

= 548 m. The plastic spheres are sufficiently light that they do not 

inhibit the bending, and the effective length is the full 1,500 m. The 

effective length will be further modified when thermal bending is 

considered. This use of effective length permits us to treat the motion 

as continuous, as per assumption 7, instead of inserting immobile 

sections and having to investigate a very complicated boundary value 

problem. 

Repeated 80.001 times 

Fig. 2- PACSAT structure 
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The differential equations and boundary conditions which govern the 

motion will be derived from the basic Hamilton's principle[12], 

t2 

of dt[T- V] 

tl 
0 2.1 

where 6 denotes the operation of variation, T is the kinetic energy, and 

V is the potential and strain energy. The energies must be expressed in 

terms of the coordinates. As shown in Fig. 1, the position of a point P 

+ 
is described by a vector r which determines the distance of P from the 

center of the earth, and by a distance s which identifies the point P. 

Under the assumption that the rod is long compared with its radius, the 

internal distortions of the cross section of the rod will be neglected, 

and it will be assumed that the position of each point on the cross 

section is characterized by the distance s. This also corresponds to the 

assumption of small displacements, slopes, and curvatures. Under these 

assumptions, the motion of the rod may be described by writing the 

position vector 1 as a function of s and t, the time, and ignoring the 

internal coordinates. 

Let p denote the mass density per unit length of the structure. For 

the steel rod with aluminum spheres, the total mass per 1.875 em section 

is the mass of the rod part plus the mass of the sphere. The volume 

density of steel is 7.86 g/cm3 , that of aluminum is 2.69. 1 The mass of 

the steel rod, radius .066 em, length 1.875 em, is .202 g. The volume of 
3 

the entire sphere (radius .595 em) is .882 em , that of the section of 

rod within the sphere is .0163 em, and hence the mass of the drilled 

aluminum sphere is 2.330 g, the total mass per 1.875 em section is 

2.531 g, and the linear mass density p is 1.35 g/cm. For the plastic 

spheres loaded rod, we assume that the spheres are sufficiently light that 

1 These and all other numerical values pertaining to materials are 

taken from International Critical Tables, McGraw Hill Book Co., New York, 

1927. 
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the mass density is that of the rod alone, which from the above figures 

is .107 gjcm. These values were first derived by Burke[ll]. 

From here on, PACSAT will be referred to as "the rod," except where 

the spheres are to be specifically discussed. The total kinetic energy 

of the rod is 

T 

L 
- + 2 lif2 

ds (J..r_) 
2 _L 3t 

2.2 

2 

All integrations over time in the ensuing derivation have the limits t 1 , 

t
2

; all integrations over shave the limits -L/2, L/2. The limits will be 

omitted and implicitly understood. According to the principle of 

variation as discussed in Ref. 12, the time integral of the Lagrangian is 

stationary with respect to variations of the coordinates about the 

"trajectory" which connects the state of the system at the initial time 

t 1 to t~_e st~_te _at the ~inal t~me t 2_, provided these variations vanish at 

the endpoints. 

or 

Then the variation of the kinetic action is 

1 (~;t)2 O!dt!dS'fP a 

+ ar 
pfdt!dsat" 

The definition of variations permits the commutation of the 

2.3 

operations of variation and time differentiation. Integrating by parts, 

or 3r -+ 2 
[ 

+ It 
pfds 3t • Or -

tl 

2.4 
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The integrated term vanishes, since the variations must vanish at the 

endpoints. The variation of the kinetic action is thus 

6T + or 

and is immediately recognizable as the acceleration term. 

2.5 

The potential energy is composed of the gravitational potential and 

the work done by the external forces. In most cases the external forces 

are derivable from a potential, but the more general case can be treated 
+ 

just as easily. Let U(r) be the gravitational potential per unit length: 

where v is the product of Newton's constant and the mass of the earth, 
+ + 

2.6 

and let F(r,t) denote the external forces per unit length. The potential 

energy associated with these external forces is 

+ + + 
·(r'-r)dr' 

0 

+ where r
0 

is an initial state of the system. The variation of the 

gravitational action is 

+ + 3 
+ldtldsplJ,(r -• Or)/]rj 

2. 7 

2.8 
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and the variation of the external potential action is 

+ + 
OW= -Jdt!dsF(r,t) 

+ 
!r 2.9 

The strain energy is found by the methods of the theory of 

elasticity. The strain in a rod element may be resolved into a tension 

along the rod and a bending couple around the rod axis. For the tension, 

see Fig. 3a. The action of th~ tension is to stretch the rod element, 

originally of length ds, into a section of length di. The work done is 

the force times the elongation. The change in rod length is 
+ 2 , 

approximately 1/2(dr/ds) ds, and the strain energy of the entire rod due 

to tension is 

Fig. 3a -Tension in a rod element 

2 Here and hereafter the square of a vector quantity means the square 
of the magnitude of the vector. 
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1 ( +)2 
z!dsT(s,t) ~: . 

Varying the time integral of this quantity, 

+ 
8r 

JdtfdsT(s,t)as 
+ 

0~ as 

The variation operation and length differentiation can be commuted. 

Integrating by parts, 

8r [ "'" 
Jdt T(s,t)as • 

a ar + +) ] Jdsas(T(s,t)as • Or • 

Since the variations need not be constrained at the ends, this 

imposes the boundary condition: 

T(s,t) 0 s = ±L/2 . 

This condition, that the rod cannot sustain tension at its ends, is 

natural to the physics of the problem. 

2.10 

2.11 

2.12 

2.13 

For the bending, see Fig. 3b. Suppose that the initially 

undistorted rod is bent corresponding to a radius of curvature ~

Consider the extension of a filament of the rod at a distance y from the 

center of the section. The length of the filament is altered by the 
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Fig. 3b - Bending of a rod element 

L 

bending in the ratio 1/(1 + yjRK). Thus, on the side of the axis 

for which y is positive, the outward side, the filament is extended, 

while on the inward side it is compressed. By the definition[l3J of 

Young's modulus, E, the force necessary to produce the extension yfR over 

the element of area dA is EdAy/RK. The couple by which the bending is 

resisted amounts to 

EfdAy • y/RK 2.14 

where I is the moment of inertia of the area (not the mass) around the 

bending axis. The angle of bending corresponding to a length of axis ds 

is ds/~. Since the mean value is half the final value of the couple, 

the work required to bend ds to curvature 1/RK is 
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1 2 
z-Eids/'\{ . 2.15 

This argument is substantially due to Lord Rayleigh[14]. 

The radius of curvature is the reciprocal of the curvature itself. 

By the assumption of small slopes, the curvature can be replaced by 
2+ 2 

a rjas . Hence, the strain energy of the rod due to bending is 

Forming the variation of the time integral of VB' 

2.16 

3 r a r 
( 

2+ 2+) 
EI! dt! ds -

2 
• o--2 . 2.17 

ds as 

Again the variation and s derivative can be commuted. Integrating by 

parts twice, 

a + -or as 
3+ a r 

as3 
2.18 

Since the variation 0~ and its s derivative are independent arbitrary 

quantities, this yields two further boundary conditions. Finally, 
+ 

collect all the terms proportional to Or under the integral sign in the 
+ 

expressions 2.5, 2.8, 2.9, 2.12, and 2.18. The arbitrariness of Or along 
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the rod requires that its coefficient vanish, yielding the governing 

differential equation. Thus, the problem to be solved is formulated as 

the differential equation: 

Inertia 

+ 
_p]Jr 
-3 

r 
+ 

The boundary conditions are 

( +) 8 ar 
- T(s t)- -as • as 

Tension 

At s = ±L/2 T(s,t) = 0 

+ + 
F(r,t) 2.19 

Bending Extemat 

2.20a 

2.20b 

2.20c 

These mean that at the ends the rod cannot sustain tension, bending, or 

shearing, all of which are clearly required conditions. 

In deriving 2.19 and 2.20, we have assumed that the kinetic energy 

is unaffected by the bending. Actually, there is kinetic energy 

associated with the rotatory motion of the rod, the so-called "rotary 

inertia" term[ 14 J, but this contributes a term to the differential 

equation which is of the order of magnitude of the square of the ratio of 

the rod radius to its length, relative to the potential energy term 

derived from 2.18, and this can safely be ignored. This neglect of the 

"rotary inertia" is customary in vibration problems. 

The condition of inextensibility leads to a restriction on the 

possible motions. Consider two points on the rod, which in undistorted 

motion are at positions s
1

, s
2

, separated by a distance ds. As the rod 
+ + 

they will be at positions r(s 1,t), r(s
2
,t). The distance between bends, 

the points must remain unchanged, so, 
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ds . 2.21 

Dividing by ds and taking the limit as ds approaches zero yields 

1 . 2.22 

This relation will be used for simplification of the equations. 

We first show that equations 2.19 and 2.20 imply the conservation of 

angular momentum. This is in contradistinction to the analysis of 

Burke[llJ, who imposes angular momentum conservation as an additional 

constraint and deduces that the librational motion cannot exist, a result 

clearly in disagreement with observation. To show conservation of 
+ 

angular momentum, take the vector cross product of the vector r and the 

vector differential equation 2.19, then integrate over the length of the 

rod. For the left side, we have (limits of integration -L/2, L/2 

implied) 

+ 
pfdsr 8t 

2.23 

This expression is immediately recognized as the time derivative of the 

total angular momentum of the rod. The first term on the right is zero 

+ + 
(r x r = 0). For the second term, integrate by parts 

+ a ar 
asT(s,t)a; 

+ r x 
+ ar 

T(s,t)ag 

+ ar 
JdsT(s, t)8S 

+ ar x-
8s 

2.24 
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The first term on the right side of 2.24 vanishes by the boundary 

condition 2.20a, the second from the cross product of identical vectors. 

For the third term on the right, integrate by parts twice: 

L 

(}4~ 
(-; X 

3+ + 32It + 

2+ 2+ 
+ a r ar Jds0_ a r 

fdsr X--~ -3 -X X-- 2.25 
as4 as as 2 2 as lls _L as 

2 

The integrated terms vanish by the boundary conditions 2.20b and 2.20c, 

the integral from the cross product of identical vectors. Hence, the 

result of integration is 

Ids~ x F(f,t) . 2.26 

Equation 2.26 asserts that the rate of change of angular momentum equals 

the torque applied by the external forces. If there are no external 

forces, the angular momentum is conserved. Hence, no additional 

constraints need be applied to 2.19 and 2.20, and Burke's result[ll] is 

erroneous. 

The differential equation 2.19 and boundary conditions 2.20 describe 

the motion of a point on the rod, relative to the center of the earth. 

However, PACSAT is known to be in orbit, executing small motions around 

the local vertical. Hence, we separate the motion into the orbital, 

librational, and vibrational motions, and treat the several motions 

separately. To this purpose, write 

+ 
r(s,t) = 

+ + 
R(t) + su(t) 

Center 
of mass Libration 

+ + + 
+ w(s,t) = R(t) + v(s,t) 2.27 

Center 
Vibration of mass Displacement 
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+ 
The vector R(t) represents the motion of the center of mass of 

PACSAT. It is of the order of magnitude of the distance of PACSAT from 

the center of the earth (1.2- 1.5 x 10
4 

km). The expression sti(t) is 

the rigid-body libration about the vertical (the displacement is 

proportional to the distance from the center of mass), and is of the 

order of the length of PACSAT (1.5 km). 

distortion of PACSAT from straightness. 

+ The vector w(s,t) measures the 

This distortion executes free 

and forced vibrations about the 1ibrating rigid body. It is of the order 

of magnitude of the permissible displacement (.5 em). Hence, the terms 

of 2.27 are such that expansion of the differential equation 2.19, 

boundary conditions 2.20, and subsidiary condition 2.22 in ratios of the 

libration to center of mass, or vibration to libration, are all rapidly 

convergent, and only fir~t-order terms need be kept. We further assume 
+ 

that the scale length of variation of the perturbing force F is at least 
+ 

on the order of magnitude of R. This is satisfied for the oblateness 

(order R), lunar gravity (order distance earth to moon= 4 x 105 km), and 

solar 

= 1.5 

gravity and radiation pressure (order distance 
8 

x 10 km), all the forces we will consider. 

earth to sun 

The tension T(s,t) may also be expanded. As is well known[9J~ a 

rigid, vertical, straight rod in circular orbit experiences a tension 

which is parabolic along its length. Hence, we take for the tension the 

form: 

T(s,t) 2.28 

where the first term on the right represents the tension associated with 

the center-of-mass and librational motion, displaying a parabolic 

variation which vanishes at the ends (2.20a); the second term is the 

additional tension associated with vibration. 
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The gravity term expands as follows: 

+ 
r -= 

3 
r 

+ 

+ + 
R+v 

R 1-+ R•v± + ( + +) 
R3 + R3 v - 3 R2 R 

+ + 
(R + v) 

R3 

-8 
where the neglected terms are on the order of 10 relative to the 

leading term. The external force expands in the form: 

++ ++ +-+ 
F(r,t) " F(R,t) + [VF(R,t)] 

+ + 

+ v 

where the expression VF(R,t) denotes the 3 x 3 dyadic which in 

rectangular coordinates has the representation: 

aF 3F 3F 
X X X 

ax aY az 

OF 3F 3F 
-· + __z __z __z VF(R, t) ax ay 3Z 

3F aF aF 
z z z 

ax ay az 

2.29a 

2.29b 

2.30 

2.31 
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and which transforms under coordinate transformations like a tensor of 

second rank. All components of·2.31 are evaluated at the point R. All 

other terms in 2.19 and 2.20 are linear and have obvious expansions. We 

obtain for the center of mass motion; 

.. + 
-+ 1-1R 1-+ -+ 
R = -- + ~F(R t) 

3 p • 
R 

for the libration: 

~ l-1 (+ it . ti-+) 
u = - R3 u - 3 R2 R -

and for the vibrational motion: 

3>'R'-o· -"~J) + _T_o <_t_l -' ~(1 
R2 p ds r 

+ 
w 

The boundary conditions become 

At s T
1
(s,t) 0 

+ 
u 

2.32 

2.33 

2.35 
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The expansion of the condition 2.2 yields 

+ 
u 

+ 
w = 0 

1 

lwl 2 
negligible . 

+ 

2.36a 

2.36b 

2.36c 

The condition 2.36a, that the vector u have unit magnitude, demonstrates 

the rigid-body character of the libration. The condition 2.36b shows 

that the vibrational motion is always transverse to the libration, and 

2.36c demonstrates that higher order terms in the vibration are to be 

neglected. Thus, we have the motion of the center of mass under central 

gravity and external forces, as described by 2.32, the rigid libration 

about the canter of mass under gravity gradient, tension, and external 

forces, described by 2.33 and 2.36, and the linearized transverse 

vibration about the libration under gravity gradient, tension, elastic 

bending, and external forces, with no bending or shearing at the ends, 

described by 2.34, 2.35, and 2.36b. These equations, under the 

appropriate restrictions, will be considered in the subsequent sections. 

The equations will be modified when thermal bending is considered. 

The assumption of linearity may be relaxed if we are willing to 

accept a complicated computer program and implement numerical methods for 

treating the nonlinear equations. A recent analysis by Kane and 

Levinson{lS, 16} describes such a treatment, but the limitations on the 

motion required to meet the requirements on radar cross section make such 

complications unnecessary. 



- 23 -

III. THE BASIC PROBLEM 

In this section, the simplest problem will be considered. The orbit 

of PACSAT will be taken as circular and equatorial. All perturbing 

forces will be neglected. We shall find the modes of libration and 

vibration of PACSAT under these circumstances~ and determine the effects 

of initial conditions. 

The motion is conveniently described in cylindrical coordinates. 

Referring to Fig. 1, the distance R to the center of mass of the 

satellite will be constant. The angle 8, which locates the position of 

the center of mass in the orbital plane, measured from a reference 

direction (the first point of Aries is convenient), will increase 

linearly with time at the orbital rate e. which is also constant. The 

+ + 7 
displacements u and w will be expressed in terms of LR' 

+ + 
i 8 , and i

2
, the 

unit vectors in the radial, velocity, and normal to the orbit plane 

directions. If we also use rectangular coordinates, with the z axis in 

the direction of the North Pole and the x direction toward Aries, we have 

the time dependences 

+ + cos8t + + sin8t 3.1a 
'R l 1 

X y 

~ + 1 le = -i sinBt + coset 3.lb 
X y 

+ + 
The vector R of equation 2.32 is simply RiR. The vectors ti and; 

are expressed as 

+ ~ ~ + 
u UlLR + U218 + ~~ 3.2a 

+ + + + 
w = wliR + w2iB + ~~ 3.2b 
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The conditions 2.36 yield 

1 3.3a 

3.3b 

If the rod were vertical and straight, we would have u
1 

= 1, all 

other terms zero. The condition 3.3a then permits the representation 

ul = cosxcosJit 3.4a 

u2 = cosxsin$ 3.4b 

u3 sinx 3.4c 

The angle $ is the in-plane angular displacement from vertical, the angle 

X is the out-of-plane angular displacement from vertical. These will be 

treated as first·-order quantities. The displacements w
2 

and w
3 

are the 

transverse displacements from straightness, also to be treated as first 

order. ~quation 3.3b shows that the radial displacement w
1 

is a second

order quantity. 

The angular velocity 9 and orbit radius R satisfy the relation 

5 3 2 
p = 3.986 x 10 km /sec , 3.5 

A corresponding relation (4.1e) holds in elliptic orbits. For PACSAT at 

an altitude of 1 earth radius (6,378 km), the orbital period is 3 hours, 

59 minutes; at 1.5 earth radius, the period is 5 hours, 34 minutes. 
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The velocities and accelerations must be represented in the 

cylindrical coordinates. Differentiating 3.1 yields 

+ •+ 
iR = ei8 

+ •+ 
ie = -8i R 

+ •2+ 
iR = -8 iR 

+ •2+ 
ie = -a i 8 

The acceleration ti is given by 

+ .. + • + + 
u uliR + 2u1~ + uliR + ... 

(~1 
• + "2 + .• + 

= 28u
2 82ul)iR + (u2 + zeu

1 
a u

2
)i

8 + u3iz 

The gravity-gradient term on the right side of 2.33 becomes 

There are corresponding terms for ~-

We first consider the libration. With the perturbing force 

omitted and some simplification, 2.33 becomes 

3.6a 

3.6b 

3.6c 

3.6d 

3.7a 

3.7b 

3.8 

3.9a 
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u2 + zeu
1 

ST0 3.9b =---u 
pLZ 2 

• 2 sr0 3.9c 
u3 + 8 u

3 =-pL2u3 

Multiply the first equation by u
1

, the second by u
2

, the third by u
3

, and 

add. This provides an equation for the tension T0
. Equations 3.4 may be 

differentiated to express the derivatives of u
1

, u2 , ffnd u3 in terms of 

~. x, and their derivatives. It is convenient to introduce the angle 9 

as the independent variable. Derivatives with respect to 6 will be 

denoted by a prime. Also, multiply 3.9a by u
2

, 3.9b by u
1

, and subtract. 

This will yield an equation which is appropriate for determining$. 

Finally, substitute the expression for the tension into the right side of 

3.9c and simplify. This equation is suitable for x. After the 

manipulations, there results: 

To 1 L282[ 1 2 + cos 
2 

8" X x(l + ~·)2 + 2 2 
3cos xcos o/ - 1] 3.10a 

tP" + 3costPsintP = 2tanx(l + tP' )x' 3.10b 

x" + [(1 + $ 1
)

2 + 3cos
2
tP]sinXcosx 0 3.10c 

To this point, there have been no simplifications produced by the 

small values of $ and x. Now we wish to restrict the libration amplitude 

to 1.5 deg = .025 rad. Keeping terms of orders 0 and 1 in equation 3.10a 

and of orders 1 and 2 in equation 3.10b and c should be more than 

sufficient accuracy. Thus, we expand 
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3.11b 

and obtain the set of equations: 

To ~pL2 8 2 [1 +~'] 3.12a 

1Ji" 1 + 3"1 0 3.12b 

x" 1 + 4x1 0 3.12c 

, .. 
2 + 3~2 zxl xi 3.12d 

x2 + 4x2 -2x lfJ' 1 1 
3.12e 

The first equation, 3.12a, represents the gravity-gradient tension, 

which has been derived many times previously[9, 10, and other papers], as 

modified by libration. For PACSAT at 1 earth radius, p = 1.35 g/cm, 

L = 1,500 m, 8 = 2~/14,340 radjsec, the tension is 

2,187(1 + ~') dynes • 
3 

The full length is used, since the entire body partakes of the rigid 

motion. This value was also obtained by Burke[ll]. 

3.13 
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The equations 3.12b and 3.12c solve immediately as 

•• 
.1 I)J

0
cos/38 + _Qsin/3e 3.14a 

13 

xl xocos28 + h•sin20 
2 0 

3.14b 

where the subscript 0 denotes initial value and 8 is measured from the 

initial time. Thus, th~ first·order in-plane libration oscillates at a 

frequency equal to 1:3 times the orbital frequency, the first-order out

of-plane libration oscillates at twice the orbital frequency. These 

results also are well known[9, 10]. If we assume the initial libration 

velocities are zero, which should be at least approximately satisfied for 

any reasonable deployment scheme, the sin terms may be dropped. 

The variation of the tension, as shown by equations 3.12a or 3.13, 

has a maximum equal to 2~J~O/ 13, if the initial displacement is entirely in 

the in-plane direction. For an initial value 1.5°, the second term in 

3.12a or 3.13 is at most 2.9 percent, so the tension is substantially 

constant. 

The equations 3.12d and 3.12e may be solved easily, and yield: 

~sin/36] 3.15a 

x2 = ~~0x0 [(4- /3)sin(2 + /3)8 + (4 + /3)sin(2 - /J)e 5sin28] 

3.15b 

where the second-order terms have been fitted to zero initial conditions. 

If the motion is limited to 1.5 deg, the maximum values of these 

expressions are respectively .00032 (x
0 

= .0262), and .00033 (~ 0 = x0 

= .0185). Thus, the second-order corrections to the libration are on the 

order of 1 percent and may be neglected. 
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The first-order libration, 3.14, represents a complicated time 

dependence for the orientation of the libration. The motions in the two 

planes are at different frequencies, so the attitude orientation of the 

body follows a Lissajous figure. If we assume the initial displacement 

is of unit amplitude and displaced 45 deg out of plane, the resulting 

motion for the first four orbits is as plotted in Fig. 4. The curve may 

be thought of as the motion of the tip, plotted in the local east (in

plane)' and north (out-of-plane) coordinate system (a plane perpendicular 

.8 

1.0 1.5 

•• 

. 4 

' ~ 0 

i z -.2 , 

6 

-A 

-.6 

Fig. 4 - Libration Lissajous pattern 
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to the radius vector). The numbers at the top and bottom of the curve 

represent the time in fractions of an orbit. The motion begins at t 0 

in the upper right corner of Fig. 4, and is at the top each half and 

whole orbit, at the bottom each quarter orbit, as can be seen from 3.14b. 

Since the frequencies in the two planes are incommensurable, the curve 

will never repeat, and will eventually cover the entire square. However, 

it can come very close to repeating. Table 2 shows some near repetitions 

of the initial value. The first column is the orbit number, the second 

the elapsed time, and the third the leftward displacement from the upper 

right corner in units of the initial displacement (W~ + X~) = 1. 

The closeness to repetition at such relatively low values of orbit 

number is remarkable. The 34.69 day value corresponds to the 

approximation 

13 = 1.7320508- 362/209 1. 7320574 . 3.16 

Closeness to other corners of the square may be even better, but does not 

represent pattern repetition. 

Table 2 

LISSAJOUS REPETITIONS 

Orbit Number Elapsed Time (days) Displacement 

4 .664 .070747 
11 1.83 .038208 
15 2.49 .005159 
41 6.80 .002766 
56 9.29 .000371 

153 25.39 .000199 
209 34.69 .000027 
571 94.77 .000014 
780 129.46 .000002 
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It is shown in Ref. 3 that the mutual viewing time of PACSAT in 

equatorial orbit of an altitude of one earth radius is about 45 minutes 

for two observers at the NE and NW corners of the continental United 

States, the minimum time, and is about 110 minutes for adjacent observers 

at 30°N, the maximum time. These correspond to .188 and .460 part of an 

orbit. In the first case, about three-quarters of an arc of Fig. 4 will 

be covered, in the second case nearly two arcs will be traversed. Thus, 

practically the full range of libration orientations will be presented to 

the observers, and the attendant reductions in cross section will have to 

be overcome. 

This completes our discussion of free libration, driven only by 

initial conditions. Before discussing the vibrational motion, we briefly 

digress to consider the accuracy of the assumption that the rod is 

inextensible. With the possible exception of forces induced by 

micrometeoroid impacts, which we will treat at the appropriate occasion, 

the gravity-gradient tension is the strongest force acting to produce 

extension of the rod. 

The total elongation of the rod, obtained by integrating the tension 

over the length, then dividing by the product of the cross-sectional area 

and by Young's modulus (2 x 10
12 

dynes;cm
2 for steel), is given by 

6s 3.17 

For PACSAT, this has the value .03 em. Considering the total 

manufacturing tolerances and possible deformations during deployment, 

this is certainly not a significant quantity. The stretching of a 

section of length 1.875 em (sphere-to-sphere spacing) at the center is 

-7 
6 x 10 em, or 60 Angstrom units, far below any manufacturing tolerance. 

The assumption of inextensibility is certainly verified. 

We now take up the subject of free vibratory modes. This involves 

solving equation 2.34 with the boundary condition 2.35 and subsidiary 

condition 2.36b. Only first-order quantities will be kept, which implies 

that the effect of the libration on the vibratory motion will be 
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neglected. We have carried out a more detailed analysis, and shown that 

there are no first-order modifications to the frequencies, but there may 

be second-order effects. Since the libration is limited to .025, these 

are changes of less than 0.1 percent and will not be considered further. 
+ 

When the representation 3.2b for w is substituted into equation 

2.34, the only surviving first-order terms in the radial component 

determine the correction to the tension as 

•2 
-2p8 w_2. 

Anticipating later results, we have the order-of-magnitude relation 

so the change in tension is very small. 

3.18 

3.19 

The in-plane and out-of-plane components of the vibratory motion 

yield the differential equations 

3.20a 

3.20h 

with boundary conditions 
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2 3 

At s .I. a w2 a w2 0 -z -2- -3-= 
as as 

3. 2la 

2 3 a w3 a w3 0 
as 2 -3- . 

as 
3.2lb 

We shall use a as one independent variable, and introduce the normalized 

length x as the other where 

s -1 .::;: X ~ 1 . 3.22 

In addition, we define the elasticity parameter 6 as 

3.23 

The parameter 6 measures the relative effects of the elasticity and 

gravity-gradient tension on the motion. For PACSAT, at one earth radius 

altitude, we have the values 

E 2 X 1012 dynes/em 
2 3.24a 

I ~(.066) 4 1. 49 X 10-S 4 3.24b em 

e 21r/14,340 
-1 3.24c sec 

For the two cases of bare rod and rod loaded with aluminum spheres, we 

have respectively p = .107 g/cm, L = 1,500 m, and p = 1.35 g/cm, 

L = 548 m. These yield 
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3 x 10-5 bare rod 3. 25a 

-4 
1.36 x 10 rod with spheres . 3.25b 

Thus, ~ is a small quantity. 

We see that the differential equations and boundary conditions are 

uncoupled, so in-plane and out-of-plane motions vibrate independently. 

Suppose the characteristic frequencies of the in-plane (out-of-plane) 

motion are denoted by wiP,k(wOP,k). Then it is apparent from the left 

sides of 3.20 that 

2 
w 

OP,k 
2 -2 

WIP,k + G • 
3.26 

Hence, only the in-plane motion need be treated in detail. The out

of-plane motion will be deduced by comparison of coefficients and the use 

of 3.26. We note that the libration frequencies (wiP 0 = /39, w0p 0 = 28) , , 
also satisfy 3.26, from which we are justified in calling the libration 

the lowest odd (in z) vibration mode. 

With the new independent variables, we have 

-' (1- X)- -[ 
2 dW2] 

ax ax 
3.27a 

At x ±1 

2 a w2 
ax2 = 

0 • 3.27b 

These may be solved by separation of variables, thus 

3.28 
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which in turn yield the equations: 

~x[(l _ x2)::] _ 
At X 

i"k d
3"k 

dx2 = dx3 
±1 0 . 

The solution of 3.29 is 

The principal task of this section is to investigate the eigenvalue 

problems described by 3.30. 

3.29 

3. 30a 

3. 30b 

3.31 

With some changes of notation, this is the same as the eigenvalue 

problem studied by Burke[llJ. He actually investigated a set of problems 

which approximate 3.30, but his treatment of the full problem did not 

consider the fact that, although the elastic term has a small 

coefficient, the problem is of the character of a singular perturbation) 

and limit procedures cannot be applied. Therefore, Burke's results, 

which are very limited because he considered only the lowest eigenvalue, 

must be regarded at best as suspect. 

The singular nature of the problem arises from the presence of the 

small coefficient in the highest derivative term in 3.30a. Suppose ~ 

approaches zero. For ~ = 0, the differential equation 3.30a reduces to 

Legendre's equation. The eigenvalues are given by 

[ 
3 ]1/2 
2k(k + 1) 
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and the eigenfunctions are the Legendre polynomials Pk(x). But this 

solution does not satisfy the boundary conditions 3.30b. Hence, the 

limit of the solution of 3.30 as ~ approaches zero is not the solution 

for ~ = 0, displaying the singular character. We expect that any attempt 

to apply a perturbation theory corresponding to an expansion in powers of 

~ is doomed to fail. 

This failure of an expansion in powers of ~ was demonstrated by an 

abortive treatment. The eigenfunction Xk could be expanded as a series 

of Legendre polynomials, and it would be expected that the coefficient of 

Pk(x) would be the largest. The fourth derivative of a Legendre 

polynomial Pk can be expressed as a sum of Legendre polynomials of orders 

up to k- 4. Hence, equation 3.30a can be written as a set of equations 

for the coefficients in the expansion, and the boundary conditions yield 

two further relations for these coefficients. The condition that this 

set of linear homogeneous equations possess a solution other than zero 

requires that the determinant of the set vanish, which provides an 

equation for the eigenvalue wk. The coefficients of the expansion then 

are found from the cofactors of the determinant. 

This is a reasonable procedure, but it is found that the terms of 

the determinant increase rapidly away from the diagonal. Suppose the 

determinant is truncated at some value N, and we wish to find the 

eigenvalues to first order in ~- This can indeed be done, with a result 

depending on N. The limit as N approaches infinity can be taken, and the 

eigenvalue does approach a limit. However, if we attempt to calculate 

the eigenfunctions, also to first order in ~. the expansion coefficients 

are all of order ~ except those corresponding to N - 1 and N, which are 

of order unity. Hence, the representation clearly has no well-defined 

convergence process, since the coefficients may be made to change 

arbitrarily by changing the number of rows kept in the truncated 

determinant. 

We have developed a convergent algorithm for computing the 

eigenvalues and eigenfunctions of the differential equation 3.30a with 

boundary conditions 3.30b. Before embarking on this analysis, we will 

prove that the eigenvalues of 3.30 are all real and positive. This 

demonstrates that the free motion is stable, that is, there are no 
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growing oscillations. The proof is limited to small displacements~ the 

range of validity of 3.30, but that is the only range of interest. 

To prove the eigenvalues are real, suppose w is a complex 

eigenvalue, with eigenfunction X. Let a bar above a symbol denote the 

complex conjugate. 

coefficients, other 

Then, since 
2 

than w , we 

3.30 is a linear system with real 

see that W is also an eigenvalue, and X 

is its eigenfunction. Multiply the differential equation for X by X, the 

differential equation for X by X, subtract, and integrate over x from -1 

to 1. There results 

2 2 -2 -
-}(w - w )JdxXX !dx 3.32 

I d 2 d - d
4
X I -X -(1 - x )-X - S-

/dx dx dx4 

where the limits are implied. Integrate the right sides by parts. For 

the terms independent of B. a single integration by parts yields boundary 

terms which vanish because of 1 - x
2 , and integral terms which cancel. 

For the ~ terms, two integrations yield boundary terms which vanish by 

3.30b and its conjugate, and also integral terms which cancel. 

Therefore, the right side of 3.32 vanishes. The integral on the left has 

a positive integrand and cannot vanish, so the only possibility is 

w2 = W2
, requiring the imaginary part to vanish and w2 be real. 

To prove ~ is positive, multiply 3.30a by ~ and integrate from -1 

to 1. Integrate by parts as above. The boundary terms will vanish, and 

there will result 

3.33 
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Since all integrals are positive, w~ is positive. The same procedure can 

be used to prove the solutions are orthogonal, i.e., 

0 k I < . 3.34 

We shall normalize the eigenfunction so that 

!dx~ 1 . 3.35 

These results are all derived without finding the explicit 

eigenvalues and eigenfunctions. To determine the solutions, we consider 

the differential equation and boundary conditions with the 

gravity-gradient term omitted. We call this the bar problem. This seems 

perverse, since we are dropping a term with unit coefficient and keeping 

a term with a small coefficient. However, this simplified problem 

contains all the singular properties of the general problem. The 

eigenfunctions of the bar problem form a basis for expansion of the 

complete problem, and, whereas we may expect slow convergence, the 

solution should actually converge, unlike the previous situation. 

The bar problem has been considered by many writers[13, 14, and 

others]. We will separate the eigenfunctions into the two classes of 

even and odd functions. The eigenvalues of the bar problem will be 

denoted by vk' the eigenfunctions by Yk(x)-

The bar problem is defined by the fourth-order differential equation 

and boundary conditions 

3.36a 
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At x ±l 0 • 

The solution of 3.36a for even eigenfunctions is 

To satisfy the boundary conditions, we require 

0 

0 . 

These equations must have a vanishing determinant, which yields the 

eigenvalue equation: 

3.36b 

3.37 

3.38a 

3.38b 

3.39 

For vk at all large, the right side tends rapidly to -1, so vk will tend 

to (k - 1/4)~. We have the explicit sequence 

3.40a 

v21~ = 1.7500053 3.40b 

k - 1/4 to 8 decimals k > 2 . 3.40c 
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The eigenfunctions take the form 

3.41 

where Nk denotes a normalizing factor. The bar eigenvalues will also be 

normalized to unit mean square: 

l 3.42 

The integration is straightforward, and yields 

3.43 

For the odd eigenvalues, we obtain the equation analogous to 3.39, 

3.44 

with the solutions 

3.45a 

v 2;~ = 2.2499998 3.45b 

to 9 decimals k > 2 . 3.45c 
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The normalized odd eigenfunctions are 

3.46a 

3.46b 

Let us expand the solutions of the full problem 3.30 in terms of the 

solutions of the bar problem, namely, 

\c (x) 

The boundary conditions are automatically satisfied. The differential 

equation becomes 

3.47 

3.48 

Multiply by Y (x) and integrate. The left side reduces to the term in 
m 

ak,m" Define a matrix element coefficient c 1 ~m by 

c ~ !dx(l -
C,m 

2 dY1 dYm 
x)-

dx dx 
3.49 



- 42 -

Then the differential equation 3.48 becomes the set of algebraic 

equations: 

2 2 _.I 
--w +t.c a j 

00 

3 k ~.t m=l £,m k,m 
0 1' ... 

where the prime on the sum means the term m = 2 is to be omitted. 

The evaluation of the coefficient c~ is a tedious task in 
•,m 

3.50 

integration of elementary functions. Omitting the details, we have for 

both even and odd functions 

t #- m • 

The diagonal elements are given by 

2 2 2 5 c, ' 3vttan -v 2 + 2 even , 

2 2 2 5 
odd c, ' 3v2cot v2 + 2 , 

We see from 3.51 that if m is large compared to 

above the diagonal~ the coefficient is approximately 

3.51 

3.52a 

3.52b 

.e, that is, far 
4 

-32(!/m) and the 

terms decrease rapidly. The diagonal elements, which are the largest, 
2 

increase as .e , so the equations may be normalized by dividing by the 

diagonal elements and the resulting determinants are all convergent. 

With the procedures proven legitimate, we did not attempt to treat 

the eigenvalues and eigenfunctions by solving the determinants 

analytically, but resorted to a computer program available for such 

purposes at Rand. The basic program, EIGRS, was prepared and is 
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supported by IMSL, Inc., Houston, Texas (International Hathematical 

Statistical Libraries). The program to calculate the coefficients c~ .,m 
and use EIGRS was written by M. D. Lakatos. 

The fundamental modes were calculated for the three values 6 = 0, 

3 x 10-5 , 10-4 . The infinite set of equations 3.50 were truncated by 

multiples of 5 up to 40 equations, and the eigenvalues wk and expansion 

coefficients a were determined. The first 20 even and odd eigenvalues 
"·~ 

and eigenfunctions were found accurately to four significant figures (no 
-4 

changes of 10 in the increase from 35 to 40 equations), and the lower 

ones were much more accurate than that. The first four odd and even 

eigenvalues for wk' and the 20th, are listed in Table 3 for the three 

values of 6. 

We may immediately draw some important conclusions from Table 3. 

First, in spite of the small values of 6, even the fourth eigenvalues 

experience appreciable changes {5 percent), and the 20th eigenvalues 

experience 40 percent increases. Second, and more important, the lowest 

eigenvalue, corresponding to the first even mode, is very nearly an integer, 

that is, the lowest vibrational mode is at nearly three times the orbital 

frequency. If the perturbations contain terms at thrice orbital, and it 

Table 3 

CHARACTERISTIC FREQUENCIES 

~ 

k 0 3 X 10-s 10-4 

1E 3.0000 3.00032 3.00107 
10 4.2426 4. 2454 4.2506 
2E 5.4772 5.4875 5.5079 
20 6.7083 6.7380 6.7916 
3E 7.9376 8.0057 8.1157 
30 9.1661 9.2980 9.4882 
4E 10.3950 10.6191 10.9105 
40 11.6248 11.9709 12.3808 

20E 54-. 88 64.18 76.82 
200 56.37 66.16 79.57 
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will be demonstrated later that thermal bending effects do involve such 

frequencies, then strong resonant responses can be expected. 

A computer program, also written by M. D. Lakatos, has been used to 

calculate the eigenfunctions Xk(x) 

and the bar eigenfunctions Y~(x). 

from the expansion coefficients ak £ 
' 

The first and second even 

eigenfunctions are plotted in Fig. 5, the fifth even eigenfunction in 

Fig. 6. Only the portion for positive x is shown. All curves are for 

~ = 10-4 . Also graphed on Figs. 5 and 6 are the suitably normalized 

Legendre polynomials P
2

, Py, and P
10

. In Fig. 5, the departure of the 

true eigenfunction from the Legendre polynomial is only discernible at 

the extreme right end of the curve, that is, near the end of the rod. 

The Legendre polynomials have strong curvature near the ends, whereas the 

true eigenfunctions are straight to fourth-order terms, so the closeness 

'·' 
2D 

12 

1.6 

1A 

1.2 

1.0 

·' 
X .6 

.4 

.2 

0 

-.2 

-.4 

-.6 

-.8 

-VJ 
0 .1 .2 

Xk{X) 

(4 k2+1 )t/2 
13,. 10-4 

.3 .6 .7 .8 

Fig. 5 - First two even fundamenta~ modes 

.9 1.0 
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! ' 

' ' '' 

~nL---~--~~--~--~----~--~--~~--~---7--~. o .1 .2 .3 .4 .5 .6 .7 .8 .9 t.O 

Fig. 6- Fifth even fundamental mode 

of the approximation is pleasing. The fifth modes show significant 

departures throughout, reaching a difference of 1.4 units at the end. As 

is plausible, more of the energy density per unit length of the modes is 

toward the center of the rod for the true eigenfunctions than for the 

gravity-gradient modes, since the elasticity suppresses bending at the 

ends. The Nth eigenfunction has N zeros, just like the Legendre 

polynomial. 

With the eigenvalues and eigenfunctions constructed, we are now 

ready to determine the effects of initial conditions on vibratory motion. 

The initial values of the coefficients Ak are given by 

'\(0) 3.53a 
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Ak (O) 3.53b 

If the rod is started from rest, Ak(O) = 0. We will return to this point 

when we discuss micrometeoroid impacts, which impart an initial velocity 

to a short section of rod, but limit ourselves to ~(0) = 0 at present, 

and look for suitable initial conditions. 

Previous investigations[2, 3, 11] have assumed the rod is distorted 

into a parabolic shape. However, this does not meet the boundary 

conditions, and the ends of the rod would jump discontinuously if the 

constraints establishing the initial distortion were released. We choose 

as our first initial condition the simplest even polynomial which meets 

the boundary conditions, has vanishing average value, and is normalized 

to unit deflection between center and ends. This proves to be the sixth

degree expression: 

2 4 6 
w6 

= (-29 + 105x - 35x + 7x )/77 . 3.54 

This expression and the comparison parabola (3x
2 - 1)/3 are plotted in 

Fig. 7. The two curves are very close, the maximum difference being .043 

at the center and ends (x = 0 and 1), and .036 near x = .65. Hence, 

expression 3.54 is a proper representation for a near-parabolic 

displacement. 

Insert 3.54 into 3.53a, and replace Xk(x) by the expansion 3.47. 

The differential equation 3.36a may be used to replace Y~ by 

and the resulting expression integrated by parts seven times. The 

boundary conditions make the integrated terms vanish for the first six 

· · S · d6w
6
;dx6 · h 1 · · 1 1ntegrat1ons. J.nce 1s constant, t e ast J.ntegratJ.on eva uates 
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the integral as 

X 

Fig. 7 -Smooth initial conditions 

1,440 dY'I 
11v8 dx x=l . 

k 

Evaluating the derivative from 3.41 and using the closeness of v£ to 

(£ - 1/4)~ yields for 3.55: 

t-1 
1,440/2 (-1) 

1l 7 v, 

3.55 

3.56 
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The first three coefficients have the numerical values .43955, -.00122, 

.00005. Thus, almost all 

~.lyl in the expansion. 

computer program, we have 

the contribution to ~ will come from the term 

From the coefficients as determined by the 

a
1 1 

= .9966, a
2 1 

' 
The 

response to the initial displacement 3.54 is 

=-.0827, 

therefore 

a3 • 1 = .0055. 

given to better 

than 1 percent accuracy by 

3.57 

The motion will be a near-parabolic shape at frequency near thrice 

orbital, with an 8 percent admixture of double-noded shape (see Fig. 5), 

at frequency near 5. 5 times orbital. The "throw" of x
1 

(x), that is, the 

difference between maximum and minimum, is 2.341, so the throw of the 

first term is 1.0256. We observe that the response to a near parabolic 

disturbance is primarily an oscillation at the initial amplitude, thrice 

orbital frequency, and still near-parabolic shape. 

To obtain a response involving many modes, we use a "broken-line" 

initial displacement. This is equivalent to a plucked string. The 

simplest form puts the break at the center, exciting only even modes, so 

we choose 

lxl 3.58 

which has the required properties (even, break at center, unit amplitude, 

satisfies the boundary conditions). The integral involving w
0 

and Ye(x) 

may be evaluated easily, yielding 

[ 
cosv, l 

1 - coshv
1 

· 
3.59 
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The factor multiplying 2/v~ is 1.1329 for £ = 1, .9942 for£= 2, and 

essentially unity thereafter. We see that the terms in the expansion 

with respect to bar eigenfunctions of ~(0), the initial value of the 
2 

coefficient of the true eigenfunction, only fall as 2/v£. To obtain 1 

percent accuracy, nine terms have to be kept. Thus, the coefficient 

Ak(O) is approximately given by 

~(0) 3.60 

With the coefficients from the computer program, these expressions, 

which we call excitation coefficients, have been worked out using the 

author's HP-34C, and are listed in Table 4. 

Again, the first term is dominant, but the higher frequency terms 

are now much more important than they were for the near-parabolic 

excitation 3.54. The shape of the rod at the initial time and after 1 

and 10 orbits has been calculated, and is plotted in Fig. 8. Because the 

most important term, that at nearly thrice orbital frequency, is back at 

Table 4 

EXCITATION COEFFICIENTS FOR PLUCKED ROD 

k 
Ak(O) 

1 .3954 
2 -.0886 
3 .0400 
4 -.0220 

5 .0147 

6 -.0096 

7 .0057 
8 -.0036 

9 .0031 
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Fig. 8 - Response to initial displacement in-plane 

its initial value after an integral number of orbits, the distorted shape 

is quite similar to the original broken line, but the changes are 

apparent. Thus, the vibration continues at the original amplitude~ but 

the shape will now be a complicated function of time. 

The analysis has all been for in-plane motion, but the same 

techniques adapt directly to out-of-plane motion, with equation 3.26 

providing the frequency relation and everything else being identical. 

The investigation shows that initial tilting or distortion will yield 

libration or vibration with amplitude substantially equal to the initial 

amplitude. The verticality and straightness requirements must therefore 

be satisfied by the initial deployment of the satellite. The verticality 

should not be difficult, but an rms lateral displacement of .5 em over a 
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length of 1,500 rn promises to be a very difficult deployment task, since 

the satellite must be installed in a dispenser of radius limited to 4 m 

by the payload bay dimensions of the space shuttle, and then unrolled 

from that dispenser, without acquiring any permanent bends which would 

lead to such distortions. 

The libration and vibration would decay with time if there were any 

damping. It has been shown by Burke[ll] that the "sticky hinges" of the 

Stanford design will be locked by the gravity-gradient tension and will 

not provide the required damping. Internal friction in steel is also 

insufficient. (The damping of metal strings in musical instruments is 

primarily due to interaction with the air.) Viscous damper booms like 

those used on the Radio Astronomy Explorer{5, 6] cannot be attached to 

PACSAT. If damping is to be provided, some other procedure must be 

found. 

This completes our discussion of the basic problem. We next 

consider the effects of various perturbations, beginning with orbital 

ellipticity. 
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IV. ELLIPTICITY EFFECTS 

There have been previous studies[7, 8] of the effect of ellipticity 

on the libration of a satellite. We shall employ a different technique, 

which yields the same driven solution and stability analysis~ and is 

valid for both in-plane and out-of-plane motions. We shall also 

investigate the effect on vibration, which will prove to consist of small 

variations of frequencies and amplitudes. 

First, let us consider the center-of-mass motion. This will be an 

ellipse in the equatorial plane with the earth at one focus. The semi

major axis of the ellipse is denoted by a, the eccentricity by e, and the 

angular coordinate by 8, measured from perigee. The eccentric anomaly 

(see any book on celestial mechanics) is denoted by E, and the mean 

orbital rate by n. Then we have the equations: 

+ + = R(i cos8 + i sinS) 
X y 

4.la 

R a(l - e
2
)/(l + ecos8) 4.lb 

cos8 = (casE - e)/(1 - ecosE) 4.lc 

nt = E - esinE 4.ld 

2 3 
n a = p . 4.1e 

Equation 4.la is the proper generalization of 3.la; 4.lb is the 

equation of an ellipse of the indicated dimensions. The angular 

coordinate and eccentric anomaly are related through 4.lc. Kepler's 

equation 4.ld expresses the time in terms of the eccentric anomaly, and 

can be inverted to express the anomaly, and hence the angular coordinate 

8, in terms of the time. Finally, 4.1e is the generalization of 3.5 to 

elliptic motion. 
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The libration and vibration will again be resolved in cylindrical 

coordinates. While equations 3.6a and 3.6b, which give the first time 
7 + 

derivatives of the unit vectors 1R and i
9

, remain valid, equations 3.6c 

and 3.6d must be generalized to include the variable angular velocity, 

hence, 

+ •2+ ··+ 
iR -a i + Bia 4.2a 

R 

+ ··+ 82"!" is -ai 'a 4.2b 
R 

The libration equation 2.33 becomes 

("2 2") - 28u - eu
2 

sr
0 4.3a u - + R3 ul 

~ ---u 
1 2 p12 1 

("2 " ) 28u
1 

ST
0 

u2 - 8 -- u + + Ou
1 

---u 4. 3b 
R3 2 p12 2 

+"-
ST

0 
4.3c u3 

R3 u3 -p12u3 

The angles ~ (in-plane motion) and X (out-of-plane motion) are 

introduced by 3.4, and the same manipulation used to separate the 

equations. The angle B is to be used as the independent variable, but 

the transformation is somewhat more complicated. It is found that 

8 4.4a 

1 
1 + ecos8 

4.4b 
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0 

2esin6 
1 + ecos8 
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The equations analogous to 3.10 are 

1 2·2r 2 2 2 8p18 x' +cosx(l+lJI') +
1

+ 1 2 2 
e (3cos xcos 1ji 

ecos 

4.4c 

4.5a 

1/J" _ 2esin8 ,1,, 3 . 
l + ecosO 't' + 1 + ecose8 ~nl/Jcosl)J 

2esin8 
'"~~~~+ 2tanxx'(l + •I·') 1 + ecos8 '+" 

4.5b 

x"- '"2~e~s~i=n~e'-cel!• + fcl + lfi')2 + 3cos2\jJ ]sinxcosx 
1 + ecosO l + ecosO 0 • 4.5c 

In 4.5a 9 is regarded as variable. The most important difference 

between 4.5 and 3.10 is the inhomogeneous term on the right of 4.5b. 

Although equations 3.10 have the possible solution~= X= 0, a 

permanently vertical rod, this is not possible for 4.5. This driven 

solution is physically very reasonable. The velocity vector of the 

center of mass is not perpendicular to the vertical, so an in-plane 

attitude oscillation can be expected. 

The intention is to launch PACSAT into a circular orbit, so it can 

be axpected that e will be small. The previously cited Radio Astronomy 

Explorer satellite (1968-55A), whose orbit and physical character is most 

similar to PACSAT, had an orbital eccentricity of .0004. An eccentricity 

of .01 at an altitude of one earth radius corresponds to a velocity 

injection error of 183 fps, far above any reasonable value. We will 

calculate the amplitude and frequency of the motion to second order in e, 

which should be more accurate than necessary. The amplitude can be found 

by expanding 4.5b and 4.5c to second order, but the frequency requires 

some third-order terms. The initial conditions will be left unspecified, 

since PACSAT may be injected at an arbitrary point along the orbit. To 

second order, equations 4.5b and 4.5c become 
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ij;" _ 2esin8 , 3 
1 + ecoseij; + 1 + ecos8 

2esin8 
~1-"'+"-"'e~c~o~s~e"" + 2 X X 

1 

X" _ ~2~e~s~i~n~8:--,c , 
1 + ecosGX +[1+ 3 I 1 + ecos8 X -2xtP' . 

4.6a 

4.6b 

The first-derivative terms may be eliminated by the transformation 

1/1 = f/(1 + ecos8) 4. 7a 

X g/(1 + ecos8) 4. 7b 

which yields the simpler equations, correct to second order, 

f" + (3 - ZecosG)f 2esin8 + 2gg 1 4.8a 

g" + (4 - Zecose)g = - Zgf' . 4.8b 

Separating the first-order and second-order parts yields 

f = £1 + £2 4.9a 

g = gl + "z 4.9b 

f" + 3£1 = 2esin8 4.9c 
1 

" g1 + 4g1 0 4.9d 

t" + 3£2 = +2ecos8£
1 

+ 2g1g{ 4.9e 
2 
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4.9£ 

The solutions of 4.9c and 4.9d, subject to the initial conditions, are 

f 
1 

esin8 + A
1 
cos/39 + 8

1 
sin/39 4.10a 

4.10b 

Thus, the driven part of the in-plane motion has amplitude e and 

oscillates at the orbital frequency, whereas the initial conditions 

provide an oscillation at the natural frequency 1:3 times orbital with the 

. 2 2 1/2 
ampl1tude (A

1 
+ B

1
) There is no driven out-of-plane motion, only the 

natural double-frequency oscillation. 

The right side of 4.9e involves terms in (13- 1)8, (/:3 + 1)9, 29, 

and 48. The solution is 

1 
11eA1 [(2/3 + 1)cos/3- 1)8- (2/3- 1)cos(/3 + 1)8] 

+ 1~eB1 [(2/3 + 1)sin(/3- 1)8- (2/3- l)sin(/3 + 1)0] 

4.11 
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The right side of 4.9£ involves terms in (2 + /3)9 and (2 - 13)9, with 

solution: 

To second order, the out-of-plane motion is independent of the 

eccentricity except as e appears in the constants A
1

, B
1

, c
1

, D
1 

which 

involve the initial conditions. 

Thus, the amplitudes of the in-plane and out-of-plane motions have 

been obtained to second order. To determine the frequencies, it is 

necessary to expand 4.5 to third order. The expressions for £1 , £
2

, g
1

, 

and g
2 

are substituted, and the terms of apparent frequency /3 and 2 are 

collected. The combined amplitude of these terms provide the correction 

to the frequency. Thus, indicating only the third-order parts on the 

right, we have 

2 = 2ecos9f
2 

- e cos29£
1 

4.13a 
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2 2 
g" + (4 + e )g = 2ecos9g

2 
- e cos28g

1 

Terms in A
1
cos/3e collect on the right side of 4.13a as 

from which we deduce the modified in-plane libration frequency 

3 24 2 
- 118 

4.13b 

4.14 

4.15a 

4.15b 

Similarly. collecting terms in cos28 on the right side of 4.13b yields 

4.16 

from which we deduce the modified out-of-plane libration frequency 

2 4 - 6 2 B2) -
WOP 13(A1 + 1 

18(C2 
13 1 + D2) 

1 
4.17a 

+ 3 2 B2) 9 2 2] 4.17b 
WOP - 52(A1 + - s2<c1 + D1) 1 
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The expressions 4.15b and 4.17b are generalizations of the results 

of Refs. 7 and 8, which treat only the in-plane motion. We see that the 

frequency of the out-of-plane motion is independent of e to second order, 

except through the implicit dependence via the initial conditions. 

The simplest case which retains full physical meaning is for the rod 

to start at rest at perigee with an infinitesimal displacement in an 

arbitrary direction. Then the constants become 

The frequencies become 

The solutions for the displacements are, to second order, 

1 + 2:2"~0 [(413- 9)cos(l3- 1)8 - (413 + 13)cos(l3 + 1)8] 

- _le
2

[(413- 9)sin(l3- 1)8 - (413 + 13)sin(l3 + 1)8] 
/3 

4.18a 

4.18b 

4.19a 

4.19b 

4.20a 
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X XoCOS'"ope + l~xo{-(4- n)f;icos(2 + /3)8 + <Posin(2 + /3)ej 

+ (4 + 13),- ;;cos(2 - /3)6 - w
0
sin(2 - /3)e] + llecosw

0
Pe 

+ sw0sinw
0
pe} - %ex0 (cos0 + cos38) , 4. 20b 

For most reasonable values of eccentricity and initial displacement, 

the second-order terms are very small. The tension is given to first 

order by 

4.21 

where thee dependence is in 92 . 

There is a question concerning the stability of the out-of-plane 

libration. Let equation 4.5b be linearized by dropping the x
3 

terms. An 

initial deflection of 1 meter at the tip of the rod corresponds to 
-6 

X= .00133, so expressions of the order of 10 are being neglected. 

Further, to simplify the analysis while retaining the significant 

effects, let the initial conditions be chosen so A
1 

= B
1 

= 0 (start the 

in-plane motion from rest, 90 deg from perigee, with initial deflection 

e). Then we have the simplified form for~: 

4.22 

and the differential equation for g becomes, to second order in e, 

2 
g'' + [4 - 3e cos29]g = 0 . 4.23 
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Equation 4.23 is in the standard form of the Mathieu equation(17]: 

y" + (a - 2qcos29)y :::: 0 . 4.24 

The stability theory of such equations is developed in Ref. 17, Chapter 

4. It may be summarized as follows. When q = 0, equation 4.24 will have 

periodic solutions, with period TI, if a is the square of an even integer. 

If q is not zero, there will be two specific values of a, regarded as a 

function of q, such that the equation has a solution of period TI. The 

two values correspond to even and odd solutions. These values of a, call 

them aE and a
0

, then describe two curves in the a,q plane, which issue 

from the a axis at a= 4k
2

, k integral. If the value of a which actually 

appears in the equation 4.24 lies between the pair of curves, the 

solution of 4.24 is unstable; if a lies outside the region between the 

curves the solution is stable. According to Ref. 17, p. 17, the curves 

issuing from a = 4 are 

5 2 4 
4 + 12q + O(q ) 4.2Sa 

ao 4.25b 

We see that for 4.23 the value of a, 4, is at the junction of the curves, 

and the problem of stability is not resolved to the second order and 

should be carried to the fourth order. 

If we assume X is infinitesimal, the solution of 4.5a is found to 

fourth order as 
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. 8 3 2 . 28 + 3(13 . 38 es1n - 2e s1n e 
12

s1n 

4.26 

and when this is substituted into 4.Sb and the lengthy manipulations are 

carried out, the fourth-order generalization of 4.23 is 

g" + 
[ 

15 4 2 
4 - -ge - 3e cos28 

4(33 1 143 )] + e zcos28 + ~ 
104

cos4G g "" 0 . 4.27 

This equation is in the form of a generalization of Mathieu's 

equation known as Hill's equation (Ref. 17, Chapter 6). The stability 

theory proceeds in the same manner. The presence of the odd harmonics of 

a requires that the periodic solutions have period 2T. After extensive 

calculations, the curves aE and a
0 

are found to be 

ao 
69 4 

4 + l3e 

4.28a 

4.28b 

and the solution of 4.27 is unstable. However, if e = .01, it will take 

about 107 orbits for the instability to produce observable effects, and 

this is over 4,500 years. Hence, although the out-of-plane motion is 

nominally unstable, there will be no effects during the operating 

lifetime of PACSAT. 
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We next consider the effect of ellipticity on vibration. The 

equations 3.20 must be generalized. We will keep only first-order 

changes produced by the ellipticity. The differential equation 2.34, 

expressed in cylindrical coordinates, becomes 

" +3 w3 
R 

(
__2_ Tl)u + To __2_ (l 
ds p 3 p as 

4 
EI a w3 

0~ 

4.29a 

4.29b 

4. 29c 

If we multiply the first equation by u
1

, the second by u 2 , the third 

by u
3

, and add, we obtain an expression for the perturbation in the 

tension. After extensive simplification, it becomes to second order 

4.30 
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The important difference between 4.3 and 4.29 is that in 4.3b, the term 

8u
1 

is first order and contributes the driving term, but in 4.29b the 

term 8w
1 

is third order, since w
1 

is second order. Hence, there is no 

driving term in 4.29. In 4.29b and 4.29c, the expression 4.30 can be 

substituted in the first term on the right, and we see that it 

contributes only second-order quantities. (In all this discussion, e, $, 

X, w
2

, w
3 

are regarded as first order.) We define the convenient 

quantities: 

F w2/(1 + ecos8) 4.3la 

G = w
3
J(l + ecos8) . 4.31b 

We are not interested in the interrelation between the ellipticity 

and the initial conditions on the librations as they affect the 

vibration. Hence, we will choose the initial conditions so that A
1 

= B1 

= c
1 

= D
1 

= 0 (see equations 4.10). Then the equations for the 

vibration, complete to first-order corrections due to ellipticity, become 

analogous to 3.27: 

lp" ~(1 - xz)~ ~(1 -
a4

F 4.32a - 4ecosEJ)--
4 3 ax ax ax 

1_(G" + G) ~(1 x2)_£Q S(1 -
a4c 4.32b - 4ecosG)--

4 3 ax ax ax 

with the same boundary conditions as in 3.27. If the first-order and 

second-order parts of 4.32a are separated (analysis of 4.32b is 

superfluous for the same reason as in 3.20), the equations for the first

order part reduce to 3.27. The second-order part is the forced 

oscillation governed by 
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IF" - ~(1 
3 2 ax 

4. 33 

Substituting for F
1 

the expansion 3.28 and for F
2 

a corresponding 

expansion with Bk replacing Ak' there results: 

4 
a xk 

4eScos8I:J\:_ (8)--
4 

1 ax 

oo 1 a 4x 
6eScos8I:A£ (O)coswt sJ dxXk (x)~ 

1 -1 3x 

4. 34 

4. 35 

The integral on the right side of 4.35 may be expressed in terms of the 

expansion coefficients of the true eigenfunctions with respect to the bar 

eigenfunctions (see equation 3.47) as 

00 4 
I:a a v 
1

K,m£,mm 
4. 36 

from which we obtain the solution for Bk' 

4. 37 

There are no possible vanishing denominators in 4.37, so therA arR 

no resonances, and the perturbations remain small. We see that the 

effect of ellipticity on vibration is to provide only small corrections. 
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2 
The changes in the vibration frequencies are of order e and may be 

neglected completely. 

This completes the analysis of ellipticity effects. We next 

consider effects of external forces, beginning with the oblateness of the 

earth. 
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V. EARTH OBLATENESS EFFECTS 

The analysis of the earth oblateness is quite complicated. 

Oblateness affects the libration and vibration equations in two ways: 

the direct effect caused by the VF term in equations 2.33 and 2.34, and 

the indirect effect caused by the change in the orbit of the center of 

mass. Furthermore, it develops that there is a resonance in the out

of-plane libration, so many terms must be kept in coefficients to make 

sure that all significant terms are included. 

The investigation begins by finding the modified orbit of the center 

of mass. As is well known, oblateness causes the orbit plane to precess 

around the pole, and causes the perigee to precess around the orbit. The 

equations of libration and vibration must be expressed in terms of axes 

moving with the precessing plane if the motion is to be understood. They 

are expressed thusly, and the resonance treated carefully. The vibration 

analysis will be very simple, since there are no resonances to the order 

treated. 

The analysis of the center-of-mass motion will follow Brouwer and 

Clemence[18]. It would have been much easier if we could just write down 

the results. However, although the precession frequencies are matters of 

general knowledge, we have not found a reference that states the 

amplitudes of the oscillatory terms to the desired accuracy. We have had 

to derive them, and do not mean to imply that we have used the simplest 

procedure. 

Consider a satellite moving in a near-circular, near-equatorial 

orbit of eccentricity e and inclination I. Let the latitude of the 

satellite be£, the longitude ~. We express the coordinates in terms of 

Delaunay variables (Ref. 18, p. 541). The mean anomaly (nt in equation 

4.ld) is denoted by i, the argument of perigee by g, and the longitude of 

the node by h. Then the latitude and longitude are given by 

sin£ = sinlsin(8 + g) S.la 
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-1 
h + tan [cosltan(B +g)] 

The radius Rand angular coordinate 8 are still given by 4.1b-e. 

The coordinates will be expanded to third-order terms in the 

eccentricity and inclination. The result is 

I 1 2 
R = a 1 + 2e ( 3 3) 1 2 3 3 J - e - ge cost - 2e cosZ£ - ge cos3£ 

1 2) 6I sin(~ + g) + e[sin(22 + g) - sing] 

,j, 2 + + h + (z 1 3) . n 5 2 . 13 3 . 
't' g e - 4e s1n.x.. + -z.e Sln2t + 

12
e Sln3£ 

- %r2
[sin(22 + 2g) + 2esin(3£ + 2g) - 2esin(2 + 2g)] . 

S.lb 

5.2a 

5.2b 

5.2c 

If there were no perturbations, f would vary linearly with time, and all 

the other elements would be constant. The disturbing force induces 

element variations, which will be treated as first-order quantities 

because they are proportional to at least the first power of the strength 

of the disturbing force. Denoting the variations by 6a, 6e, etc., we 

have for the variations of the coordinates: 
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1 !a R r ( 9 2) 9 2 I :;:OR ;-; + e - 1 - ge cos£ - ecos22 - ge cos3t Oe 

5.3a 

O(sin~) = ~ 1sin! + r[-2esin(t +g) + sin(2£ + g) - sing 

+ ~esin(3£ +g)+ iesin(t- g) Joe 

+ Ilcos(£ +g)+ e[cos(2£ +g)- cosg]lo(t +g) 

+ r{cos(2t +g)+ cosg + iecos(3t +g) + iecos(t- g)jeot 

5.3b 

+ rz(l- ~e 2 )cost + 1ecos2t + 
1
;e

2
cos3t]eot- troisin(2t +g) 

- ~r2 l[sin(3t + 2g)- sin(t + 2g)]Oe + cos(22 + 2g)O(t +g) 

+ [cos(3£ + 2g) +cos(£+ 2g)]e0tl 5.3c 

The terms of 5.3 have been arranged to eliminate apparent singularities 

in the perturbations of the elements when e and I are small. 

The disturbing force is the gradient of a potential: 

u 5.4a 
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vu 5.4b 

-3 
The oblateness coefficient J

2 
has the numerical value 1.0826 x 10 , and 

R is the radius of the earth. The theory as developed in Ref. 18 uses a 
e 

Hamiltonian formalism. Coordinates L, G, H, canonically conjugate to t, 

g, h, are introduced, and the Hamiltonian is represented in terms of 

them. A canonical transformation is performed, which introduces a new 

set of elements such that the dependence of the Hamiltonian on ~. g, h 

disappears to first order in J
2

. The variations of the elements are 

given in a closed but very clumsy form on p. 568 of Ref. 18. Expanding 

to second order in e and I yields the variations in the elements as 

required by equation 5.3, as follows: 

oa 3 2 2 
4j[4ecost + 6e cos2t + ZI cos(Zt + Zg)J S.Sa 

a 

ir2
)cos£ + 3ecos21 + i~e2cos31} 

+ Zg) +~cos (39.- + 2g)J 

S.Sb 

or tjrfcos(2£ + Zg)- ecos(£ + Zg) + ~ecos(3£ + Zg)] S.Sc 

S.Sd 

r(o£ + og) tjr!l3esin£- sin(2t + Zg) + esin(£ + Zg) 

7 . ( ) ) - 3esm 31 + Zg S.Se 
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O(t + g +h) = %j[7esint + 6e2sin2t + r 2sin(2t + 2g)] 5.5£ 

j [PACSAT at 1 earth radius] . S.Sg 

Where these are substituted into 5.3, there is very extensive 

simplification. The expressions which finally result for the coordinates 

themselves are given to second order by 

5.6a 

sin£ I ((1- tj)sin(t +g)+ e(l + fj)sin(2t +g)- e(l + fj)sing] 

5.6b 

- i(l + j)I
2
sin(2t + 2g) . 5.6c 

The perturbed frequencies are given on p. 572 of Ref. 18 as 

[ 3.( 32 32)] n 1 + 21 1 + 2e - 21 5.7a 

g 5.7b 



0 

3 . ( 2 1 2) h "" -znJ 1 + 2e - zi 
2 3 

n a " . 
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5.7c 

5.7d 

The frequencies may be interpreted as: t is the perigee to perigee 

or anomalistic frequency, £ + g is the nodal frequency, and f + g + h is 

the longitudinal recurrence frequency. The changes indicated by 5.7 show 

that the perigee advances and the node regresses. It is convenient to 

redefine the orbital elements a, e, and I, which are arbitrary constants, 

to simplify 5.6. We shall choose a new set of parameters such that the 

constant term and the term in cosf in 5.6a, and the term in sin(f +g) in 

5.6b, have the same coefficients as in 5.2a and 5.2b. With the new 

parameters, we obtain 

R 9' a[l + %e
2

- ecos£.- %e
2 (1- ~)casU +~r2cos(2£ + 2g)l 

S.Ba 

sin£= r(sin(i +g)+ e(l + ~)sin(2i +g)- e{l + ~)singJ 

5.8b 

S.Bc 

5.8d 

£ + g 5.8e 
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2 
e 

The angular rate in orbit 8 is given by 

7 2 ) aji cos(Z£. + 2g) . 

With the results 5.8 and 5.9, which describe the motion of the 

S.Sf 

5.9 

center of mass in the presence of oblateness, we can proceed to determine 

the libration and vibration equations. We first must introduce a 

coordinate system to represent the in-plane and out-of-plane motions. 

This will be chosen as the radial unit vector, the local unit horizontal 

velocity vector, and the cross product of the first two. Expressing 

these coordinates in terms of the latitude and longitude, we obtain 

.,. + 
11 = iR 

.,. . .,. •+ • 
12 (.\:1.!: + cos£¢i¢)/9 

+ •+ •+ • 
i3 = (cos£f/li£ .l:i~)/8 

Th d · 1 '1- -+ -+ "11 b 1 d - '1- -i.n. t .• h.• e lsp acemen-s u, w Wl e reso ve ln_o components _ _ _ 

directions defined by 5.10, thus 

S.lOa 

5.10b 

5.10c 
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~ ~ + 7 
u ulil + u2i2 + ll313 S.lla 

~ + + + 
w = w 111 + w2i2 + W31-3 S.llb 

The terms u
1

, w
1 

are the radial components, u
2

, w2 are the in-plane 

components, and u
3

, w
3 

are the out-of-plane components. As before, u
1 

is 

close to unity, w
1 

is second order, and the others are first order. 

The time derivatives of the unit vectors are needed to express the 

acceleration in components. We introduce a quantity P, which we will 

call the twist, by the relation 

p [ 
.. • 2 
£ + cos£sin£¢ - '] . -;- /Qlcos£ 

8 
5.12 

The time derivatives of the unit vectors are given by 

+ •+ 
i1 = Bi

2 
5.13a 

+ -~ + 
12 -Bi + Pi3 

5.13b 
1 

+ + 
i3 = Pi

2 
5.13c 

We see that the twist P measures the internal rotation of the 

coordinate system. It is easily shown from the equations of motion that 

P vanishes for a purely elliptic orbit. For motion under oblateness 

forces, the various derivatives in 5.12 may be reduced using 5.8b and 

5.8c, and the result to second order is 

p -3nji [sin(i. +g) + }esin(2£ +g) + 1esing] . 5.14 
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The acceleration and gravity-gradient terms combine to form the three 

expressions as left sides of equations analogous to 4.3, 

"1 - (82 + ~)u -
R3 1 

28u
2 

- eu
2 

+ P8u
3 

5.15a 

"2 - 8 -("2 L+ 
R3 

P2)uz + 2Gu
1 

+ eu
1 

2P~ 3 - Pu3 5.15b 

u3 + (~3 - p2)u3 + P8u
1 

+ 2P~2 + Pu
2 

5.15c 

and similar expressions for w. 
-5 

on the scale of 10 , the terms 

Since P is proportional to ji, which is 

in P2 will be neglected. The term P9u
1 

in 5.15c shows that the twist induces a driving term in the out-of-plane 

libration. 
+ 

We next have to transform the dyadic VF 
+ 
u on the right side of 

+ 
2.33. We observe from 5.4b that the force vector F, evaluated at an 

arbitrary point, r, £, ~. can be written in the form: 

5.16 

The displacement from the center of mass can be written in terms of the 
+ 

spherical coordinates, and also in tha form 5.11. Using V as the generic 

term for the displacement, we have 

v = v1 5.17a 
r 

v._ = (.l:V 2 + cosXrfJV
3
)/6 5.17b 

v. = (cos£~V2 £v3J;a 5.17c 
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The changes in latitude and longitude are given by 

5 .18a 

OI(J == V qJRcos! 5.18b 

-t + 
and the variations in the unit vectors ~r' i£ by 

oi + + 
= (V£i£ + V ~i~)/R 5. 19a 

r 

,.,. 
1£ = 

+ 
- (V£il + 

+ 
tan£V~i~)/R 5.19b 

,.,. 
1~ = 

+ 
-(V~il 

+ 
tan£V£i£)/R 5 .19c 

In equations 5.17 ~ 5.19, the quantities£, R, and the time derivatives 
+ 

are evaluated at the center of mass. We now have for the variation ofF, 

oF 5.20 

After extensive reduction, this leads to the form: 
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• 2 ) sin!cosl¢ F V 
• 2 2 2 
8 

cos££¢' 2 --t ··(aF ) J + R82 8£ + tan£F2 V3 ]_2 

+ cos.£¢ --..-l:..v + cos££¢ __ 2 + 
[ 

•3F ••(3F 

8 ClR 1 R8 2 8£ 

5.21 

We will keep only first-order terms in e and I. On substituting from 

5.4b and 5.8, we have 

5.22 

If we keep the same order of accuracy in the expressions 5.15, we obtain 

the equations of libration: 

8T0 --zul 
pL 

5.23a 

u2 - n
2 

(1 - ~) ecostu2 + 2n (1 + tj + 2ecos2}~1 - 2en
2 

( 1 - ~-j) sintu
1 

5. 23b 
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"3 + n211 + 2_j 2 + 3 (1 + 1~j )ecos£ Ju3 - 1Sn
2

j Isin(£. + g)ul 

- 6njisin(i + g)~2 - 3n
2

j I cos(£ + g)u2 
ST

0 
----z"3 
pL 

We apply the same transformations to these equations as used in 

3.10, except that the time is retained as the independent variable. 

Keeping only first-order terms, we find: 

5.23c 

1 2{ 21 15 . l ( sPL n 3 + zj + lOe(l + 3J)cos£ + 2n l + ij + ecos£)~ 

5.24a 

f.i)sin£- 6nj!sin(i + g)x 5.24b 

x + n 2 [4(1 + 3j) + (15 + 69j)ecos£]x = 1Sn
2
jisin(t +g) 

+ 15n2jelsin(2£ + g) + 6njisin(£ + g)~ + 3n2jicos(£. + g)W 

We see that the in-plane and out-of-plane frequencies and the 

tension are slightly modified by the perturbations. The term in $ in the 

tension has been approximaLed La obLain 5 .24b aud c. If we regard X and 

$ as infinitesimal and omit the initial conditions, the solution of 5.24b 

and 5.24c, with only the driving terms kept, is 

5.24c 



- 79 -

5.25a 

x
1 

= Sjlsin(E + g) . 5.25b 

Substituting x
1 

for x in the last term on the left of 5.24c, ~l 

for ~ on the right, keeping only the resonant terms yields the critical 

second-order equation 

5.26 

The right side is the driving resonant term, with frequency 2(1 + 3/4j)n. 

This differs from the natural frequency on the left by a term of order j, 

so the factor j will disappear from the solution. This resonant 

displacement has the value 

x
2 

= -3eisin(2t + g) . 5.27 

If e = .01, I = 1.5 deg, the amplitude of this resonant term is ,045 

deg. Hence, although the resonance exists, its effect is very slight. 

The same type of analysis can be applied to the vibration equations. 

However, the lack of a driving term in the equation analogous to 5.24b, 

and the fact that the lowest vibration frequency is thrice rather than 

twice orbital, allows no resonances to exist to at least second order in 

the parameters. Hence, the effect of oblateness on vibration is at most 

to change the frequencies of the fundamental modes by amounts of order j, 

which is about .00027 for PACSAT at an altitude of one earth radius. We 

deduce that there are no significant effects of oblateness on vibration, 

and the only effect is the resonant libration 5. 27. 

We next consider other orbital perturbations. 
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VI. OTHER ORBITAL PERTURBATIONS 

In this section we shall consider the effects of solar and lunar 

gravity and of solar radiation pressure. The theory has been developed 

by previous investigators. Just as oblateness causes a precession of the 

orbit plane around the equator, solar effects produce precession around 

the ecliptic, and lunar gravity produces precession around the lunar 

orbit plane. We will show that the magnitude of the precession rates 

produced by the sun and moon is very small compared to the oblateness 

precession rate, and infer that the effects on libration and vibration 

will be correspondingly small. 

The parameter we will use for comparison is the precession rate of 

the node. This is given from equation 5.7c as 

h 

For PACSAT at an altitude of one earth radius~ this has the numerical 

value 

h = -.875 deg/day . 

The corresponding expressions for the solar and lunar precession 

rates are[19] 

where D denotes the disturbing body, of mass MD, distance RD' and 

inclination to the equator ID. For the sun, we have 

6.1 

6.2 

6.3 
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6.4a 

R 2x6.378xl03 

"n 1. 495 X 10
8 

8,53 X lQ-S 6.4b 

23.45 deg . 6.4c 

These yield 

h -t X 2.16 X 103 
X J X 105 

X (8,53 X 10-S)J X ,762 

-.00023 deg/day. 6.5 

Similarly, for the moon, we have 

6,6a 

~:: 2 X 6,378 X 10
5 

"n 3. 844 X 105 
.0332 6. 6b 

18.3 < ID < 28.5 6.6c 

where the third of equations 6.6 describes the precession of the lunar 

orbit plane around the ecliptic. Using 18.3 deg, the value which 

produces the greatest precession, yields 
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3 3 1 3 -4 X 2.16 X 10 X 81.
3 

X (.0332) X .852 -.00062 deg/day • 

6.7 

Thus, the ratio of the lunar precession rate to the oblateness precision 

rate is about .0007, and we infer that the effects on libration and 

vibration will be reduced by about the same relative value. Hence, luni

solar gravity effects will be negligible. 

We next consider the effect of solar radiation pressure. This 

effect has caused strange behavior on the part of past satellites. It 

produced the large changes observed in the perigee of the ECHO balloon, 

and an interaction between solar radiation pressure and bending produced 

by solar heating caused the rapid reduction in spin rate of the boom

carrying satellites Alouette and Explorer XX[ZO]. However, we shall show 

that for PACSAT the solar radiation pressure effects are negligible. 

The solar radiation pressure on a specularly reflecting sphere 

produces the acceleration[20J, 

6.8 

where J is the solar incident flux, A the projected area, c the velocity 
+ 

of light, M the mass, and a the unit vector directed from the sphere 

toward the sun. If the satellite is not specularly reflecting, the 

magnitude of the acceleration is reduced. This acceleration is in the 

direction opposite to the solar gravity, and may be thought of as a 

reduction in the effective gravitational constant. For PACSAT, we have 

the numerical values 

3 2 
J = 1.37 x 10 w/m 6. 9a 

8 
c = 3 x 10 m/ sec 6.9b 



A 
M 

3 1 
4-;p 
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3 1 
4 

X .595 ' 10-2 3 
X 2 • 69 X 10 

from which we deduce the acceleration: 

-7 2 
a= 2.14 x 10 mjsec . 

The acceleration due to solar gravity is 

a 

2 .0468 m /kg 6.9c 

6.10 

6.11 

where g is the acceleration of gravity at the earth's surface. This has 

the numerical value 

5 -5 2 
8 = 9.8 X 3 X }Q X (4.266 X }Q ) 

-3 
5.35 )( 10 . 6.12 

We see that the relative reduction in the effective solar gravity 
-5 

caused by solar radiation pressure is about 4 x 10 . Hence, solar 

radiation pressure causes a very small change in an already small effect 

and can safely be ignored. 

There is another solar radiation pressure effect which should be 

considered. The satellite will pass into and out of the earth's shadow. 

During its passage into the penumbra, the only effect is a steady 

decrease in the solar flux. The decrease is uniform along the satellite. 

However, during the time interval which begins when the lower end of the 

satellite enters the umbra and ends when the upper end enters, a "wave of 

darkening" passes up the satellite, and the solar radiation pressure is 

extinguished. This could potentially cause both libration and vibration. 

The effect, however, is negligible. We will calculate the change in 
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velocity of the upper end of the satellite relative to the lower, and 

show that this change is far below detectability. 

We will calculate the effect at the time when the sun is on the 

equator, that is, the equinox, since that is clearly when the effect is 

greatest. The configuration is depicted in Fig. 9. The sun, of diameter 

n
5

, is at distance R
8

. The satellite enters the penumbra at P, the umbra 

at Q. The figure is not to scale, and the lines connecting the sun to P 

and Q should be nearly vertical. The angle t which measures the sun's 

angular diameter is 

y 
Ds = 1.398 x 10

6 

Rs 1. 495 x 108 
.00933 rad .53 deg. 6.13 

For PACSAT at one earth radius altitude, the angle a
0 

is 60 deg. It 

is easily demonstrated that the angle PDQ, the width of the penumbra as 

seen from the center of the earth, is also equal tor. The arc length PQ 

is then Rr = 119 km. The velocity of the satellite in orbit is 5.59 

km/sec, so the time to cross the penumbra is 21.3 sec. 

If we draw the plane from the satellite instantaneous position, 

measured by the angle 8, tangent to the earth 1 s surface and extended to 

the sun, and neglect atmospheric refraction, the portion of the sun 1 s 

area between the intersection of that plane and the left edge of the sun 

(Fig. 9) is observed. It is easily shown by the law of cosines and a 

simple calculation that the solar flux is reduced from its "full sun11 

value J to the effective value 

J' 6.14 

At the time when the lower end of the satellite just enters the 

umbra, the upper end is at the angular position e
0 

- L/I3R. The flux is 

reduced to the amount: 
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Fig. 9 - Passage through penumbra 

--~--

' ' 
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J' 1.37 X 10+3 X 2 X (-1-)1/2 
1T /3Ry 

and the acceleration to the amount: 

2 74.4 w/m 6.15 

-8 2 
a= 1.16 x 10 m/sec . 6.16 

The time to pass into the full umbra is 

.3 sec 6.17 

where T is the satellite period, so the change in velocity of the upper 

end with respect to the lower is 

6v 
-8 -9 

1.16 x 10 x .3 = 3.5 x 10 m/sec . 6.18 

This is far below any detectable amount, and also much below any error 

caused by emplacement, so the effect of passing into or out of the 

earth's shadow, and thereby losing solar radiation pressure, is 

completely negligible. 
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VII. MICRONETEOROID IMPACT EFFECTS 

All the external forces considered to this point have very large 

scale factors. The gravity-gradient and oblateness terms have scales for 

variation on the order of the orbit radius, the solar and lunar effects 

scale like the distance to the sun or moon. By contrast, micrometeoroid 

impacts have as a geometrical scale the radius of the impacting body, 

which is small compared to the size of PACSAT. Hence, we can expect the 

excitation of many vibrational modes by an impact. We shall assume that 

the impacting body is sufficiently small that it does not sever or 

produce other gross effects on PACSAT. 

The momentum of the incoming body will be absorbed in a region of 

length about equal to the meteoroid diameter. There will be cratering 

and spallation, which cause ejection of mass from the impacted body. The 

theory of this effect can be found in Ref. 21. Approximately half the 

kinetic energy of the meteoroid is transferred to the ejecta, so we shall 

take the momentum transfer to PACSAT as M.v.;/2, where M. is the mass of 
' ' ' 

the meteoroid and v. is its velocity. Furthermore, the direction of the 

' 
impacting body is arbitrary. The component of velocity transverse to 

PACSAT has the rms value v.;/3, so the transverse component of momentum 

' 
transfer will be Mivi;/6. 

The theory of the transverse vibrations of struck bars was developed 

by Rayleigh (Ref. 14, p. 270), and the theory of bars in orbit is almost 

the same. We ignore the ellipticity and perturbing forces, and let the 

meteoroid, with effective 

point s
0

. The section of 

momentum M.v.;/6 and diameter d., strike at a 
' ' ' 

rod about s 0 of length di will absorb the 

momentum, and will be set into motion with an initial velocity Y
0

, which 

is determined from conservation of momentum: 

s -
0 

7.1a 

7.1b 
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Suppose the direction of impact is in-plane. The theory is the same 

for out-of-plane motion. Let the initial displacement be zero. Then the 

solution of the vibration equation is given by 3.31, where Ak(O) = 0, and 

Ak(O) is 

7.2a 

7 .Zb 

and thus the complete motion is 

y (x, t) 7.3 

where the libration is described by k = 0, X0
(x) = x, w

0 
= /:3. Even and 

odd vibratory modes are to be included in 7.3. 

We calculate the motion of the point of impact. If we then average 

over possible impact locations, we obtain the simpler expression: 

y(t) 7.4 

The series which appears is an oscillatory function of time, whose peak 

value is approximately 1.5. Hence, the amplitude of the transverse 

motion is 



y = fiMivi 
\/2 nLp 
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and the libration is about 3/8 of this. 

7.5 

Data for the meteoroid population are given in Ref. 21. The 

incoming velocity is taken to be 16 kmjsec. This appears rather low, 

since meteoroids are observed with incoming velocities up to 70 kmjsec. 

We will use the referenced value, but observe that the momentum transfer 

scales linearly with the incoming velocity. With the appropriate 

constants for PACSAT, the vibration and libration amplitudes are given by 

4 
6. OS X 10 M. (g) 

' 
7.6a 

4 = 2.27 X 10 M.(g) 
' 

7.6b 

in centimeters. If we had taken the impact at the tip, these values are 

approximately doubled. 

The permissible vibration amplitude is .S em, the permissible tip 

libration amplitude is 20m (l.S deg). The impacting mass which will 

produce these deflections is 

(vibration) 7.7a 

.088g (libration) . 7.7b 

A particle of mass .088g and a velocity of 16 kmjsec has a kinetic energy 

of about 11,000 joules. Such an impact would undoubtedly smash PACSAT to 

the proverbial smithereens. 
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We now must consider the probability of impact of particles of the 

indicated size. The flux of meteoroid particles per square meter per 

second is given in Table I of Ref. 21, which we reproduce in graphical 

form in Fig. 10. We see that the flux at the indicated levels is 

' 
~ 
E 

• " • [ 
< 
0 
< 

-6 

-7 

_, 

Flux (8.3 x 10-6) = 5.3 x 10-s 

Flux (. 088 2__ -~- J__Q~_12 

-2 -1 
m s 

-2 -1 
m s 

0 

0 ~ 0 • 

-10 

-11 !-----:!:::----':----':----:---!:---:---+--......J 
0 -10 -9 -8 -7 -6 -5 -4 -3 

LO!JIO [ M {g)] 

Fig. 10- Meteoroid flux (from B.arengoltz) 

7.8a 

7.8b 
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The projected frontal area is 

A = N(1rr
2 + £-d) 7.9 

where r is the radius of the sphere (.595 em), JZ. the length (.685 em) and 

d the diameter (.132 em) of the rod, and N is the 

This 

flux 

works out to a frontal area of 9.62 
2 

The m 

gives the probability of impact per day as 

Probability (vibration) 

Probability (libration) 

.044 

-6 
. 83 X lQ 

from which the expected time between impacts is 

Interval (vibration) 22 days 

number of sections. 

product of this and the 

7.10a 

7.10b 

7 .lla 

Interval (libration) 
6 

1.2 x 10 days = 3300 years . 7. 111.; 

If the representative velocity were 50 krn/sec instead of 15, the interval 

for vibratory excitation exceeding the permissible would be only 8 days. 

Since the intervals should have a Poisson distribution, the standard 

deviation should be about the same as the mean. 

We should check the consistency of our assumptions. If the incoming 

particle is a small grain, its density is about .6 g/cm
3 

(Ref. 21). The 

diameter of a spherical particle of mass 8.3 x 10~ 6g and density .6gjcm
3 

is .-025 em, small compared to the size of a PACSAT sphere. Hence, it is 

reasonable to treat the momentum absorption as concentrated. The kinetic 

energy of such a particle is about 1 joule, and the initial velocity is 
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given by 7.lb as about 2.5 mfsec. The PACSAT structure should be able to 

sustain such an impulse without rupturing. 

We see that the effect of micrometeoroid impact on PACSAT vibrations 

is very important. Even if the initial alignment is perfect, we can 

expect excessive vibration to be induced by meteoroid impact within about 

a 20-day interval. This is much too frequent for satisfactory operation. 

Some method of damping must be provided. 

Before leaving the subject of meteoroid impacts, we shall consider 

the excitation of longitudinal vibrations. Analogous to the calculation 

of the transverse momentum, the effective longitudinal component of 

momentum transfer is M.v.f/6. The theory of longitudinal vibrations of 
1 1 

bars has also been worked out by Rayleigh (Ref. 14, p. 245). The 

longitudinal motion z(s,t) is governed by the differential equation and 

boundary conditions: 

3
2

z 2 

2 
b2~ 7.12a 

3t as2 

at .r. 3z 
0 s = -2 as 7.12b 

1 

b mz 5.04 5 (steel) x 10 em/sec . 7.12c 

Here a is the volume density of steel and E is Young's modulus. The 

parameter b is the velocity of sound waves in steel. We choose the 

initial deflection equal to zero, and the initial velocity, analogous to 

?.lb, with impact at s
0

, 

zo s -
0 

7.13 
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The solution of 7.12a, subject to the boundary conditions 7.12b and 

initial condition 7.13, is 

z(s,t) 
Mivi oo 2rrks 2rrks0 
-~ Lcos~-cos-~sin2'1Tkbt/k. 
Y6npb l L L 

7.14 

The series has the peak value u/2, so the amplitude for longitudinal 

vibration is 

z 7.15 

For a 16 km/sec particle~ this becomes 

z em . 7.16 

The change in the radar cross section of PACSAT produced by 

longitudinal vibrations is not given by the analysis of Ref. 3 which led 

to Table 1, and we will calculate it here. The position of the m1th 

sphere is given by ms + z(ms), where s is the spacing between elements. 

Assuming z is small, if we define the mean and mean square values of z by 

z 7.17a 
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2 
z 7 .17b 

the change in radar cross section is 

7.18 

-2 
The moments z and z will be functions of time. If we assume the impact 

- -2 
is at the center, s

0 
= 0, then the moments z and z are calculated to be 

Mivi 1~(-1)k 
z 

l()npb NE--k-sin2Tikat 7.19a 
l 

2 -2 7 .19b z = Nz 

The series in 7.19a has the amplitude ~/2, so we obtain for the change in 

cross section 

7.20 

With s = 1.875 em, N = 8 x 10
4

, and z given by 7.16, this gives 

7.21 
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For a 1 percent change in cross section, the required mass is 18 grams. 

A particle sufficient to produce 

produce a longitudinal vibration 

a transverse vibration of .5 em would 
-6 

of 2.7 x 10 em, clearly a negligible 

effect. The lowest frequency associated with longitudinal vibrations is 
-1 

b/L = 3.3 sec , so the longitudinal vibrations are very small and very 

rapid compared to the transverse vibrations. 

The meteoroid impact can also produce torsional vibrations. These 

will not have any effect on the radar cross section, so we need not 

analyze them. The effects on the motion should be comparable to the 

displacements associated with longitudinal vibrations. 

We can make a crude estimate of the force involved in the impact of 

a particle which produces .5 em vibration amplitude. According to Ref. 

21, a meteoroid impact produces a hemispherical crater, with a radius R 
c 

given by 

R 
c 

di 
7.22 

Here oi' vi, and di are the volume density, velocity, and diameter of the 

meteoroid, and S is the yield strength of the material. Assuming the 

impact is on a sphere, we use for S the tensile strength of aluminum, 

which depends on the forming, annealing, and 
8 

spheres and should be between .4 x 10 and 2 

previous numbers (o. = 600 kg/m
3

, v. = 1.6 x 
1 1 

- -- ---------- ---- ----

other properties of the 

x 106 Newtons/m
2

. With the 
4 -4 

10 mjsec, d. = 2.5 x 10 
1 -- ---- -

,7.22 yields a crater radius between .1 em and .17 em. We use .14 em 

m)' 

as representative. The crater is formed by a fracturing and yielding 

process, which we will estimate to propagate at the speed of sound in 

bulk aluminum (6.4 x 10
5 em/sec). Since the impact is hypersonic, we 

should actually use the velocity of propagation of shock waves, but this 

differs from the sonic velocity by a factor of 2 or 3 and we are only 

interested in the order of magnitude of the force. The time for the 

meteoroid to be brought to rest we estimate by dividing the crater radius 

by the speed of sound, and obtain 



l>t = R /b 
c 
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5 
,14/6.4 X 10 

-7 
2.2 x 10 sec . 7.23 

The average force is the momentum change M.v.;/:2 divided by the time 
1 1 

interval L'l.t, or 

-6 6 "' -7 8.3 X 10 X 1.6 X lQ jY2 X 2.2 X 10 7.24a 

7 ;;::;: 4 x 10 dynes 7.24b 

We see that this force is very large compared with other forces that may 

act, but it has a very short duration. 

The calculations of meteoroid effects have been based on the 

assumption that the solid sphere stops the meteoroid. If PACSAT were 

built of hollow spheres, the meteoroid might punch its way through and 

exit carrying off some of the momentum. We take as a reasonable 

approximation that the meteoroid should have sufficient velocity to punch 

two craters of depth, given by 7.22, equal to the thickness of the sphere 

wall. The tensile strength of plastic should be used, which we expect to 

cover the same range as does aluminum (phenolic plastics, the most up-to

date type in the critical tables, cover the range .7 to 1.7 x 10
8 

2 
Newtons/m ). According to the immediately preceding calculation, an 8.3 

-6 
x 10 g particle will just penetrate a shell with wall thickness .1 em, 

and will certainly not have enough energy remaining to penetrate the 

shell a second time. Hence, if the hollow spherical shell has a 

thickness of one millimeter, which is certainly reasonable, the analysis 

for the solid sphere should still be correct. 

We conclude that meteoroid impacts can have a very important effect 

on the usage of PACSAT, since impacts sufficient to cause a radar cross

section loss of 1 dB can be expected to occur about every 20 days. A 

loss of 10 dB can be expected about every 50 days. The oscillations 

associated with these impacts must be damped if PACSAT is to operate 

satisfactorily. 

The next and final topic for investigation is the effect of bending 

caused by thermal stresses. 
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VIII. THERMAL BENDING EFFECTS 

There have been numerous investigations of the bending of long booms 

under solar input. Most of these studies have been applied to the Radio 

Astronomy Explorer satellite (1968-55A), which carries four 750-foot 

booms in a cruciform arrangement around the satellite body, plus a damper 

boom. The booms are extendible beryllium-copper thin-walled tubing with 

overlapping portions. A study by Yu[22], with comments by Augusti[23], 

Jordan[24], and Yu[25], concerning the stability of a boom making a fixed 

angle with the sun-line, showed after much disagreement that a boom is 

stable when the angle between it and the sun-line is less than 90 deg, 

but is unstable if the angle exceeds 90 deg. Sikka et al. [26] determined 

the temperature distribution and curvature in long solid cylinders in 

space. We shall use their results directly. Thermal curvatures in long 

booms have been studied by Eby and Karam[27J, Vigneron[28], and 

Graham[29], with particular attention paid to the effects of thermal time 

constants on the motion. 

The problem to be treated may be visualized as follows. PACSAT, in 

orbit around the earth in a nominally vertical position, receives direct 

heat from the sun and reflected heat from the earth. The reflected heat 

causes temperature variations along the rod which would primarily lead to 

longitudinal displacements and vibrations, which we may neglect per the 

investigation on micrometeoroids. The direct heat causes temperature 

variations across the rod. The rod expands more on the heated side than 

on the unheated, which causes it to curve away from the sun-line. This 

thermal curvature will couple to the mechanical curvature used in all 

preceding sections of this report, and we can expect substantial 

excitation of vibratory modes. In particular, if the solar input 

contains third harmonics of the orbital frequency, there will be resonant 

excitation of the lowest vibrational mode, and large deflections may 

result. This proves to be the case, and thermal bending effects will 

apparently render the present design of PACSAT unfeasible for 

satisfactory communications. 
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We begin by summarizing the investigation of Sikka et al.[26]. They 

treat a long solid cylinder of homogeneous isotropic material. The flux 

from the sun is incident normally, and a fraction a is absorbed. Thermal 

variations along the cylinder are neglected. The steady-state 

temperature is found. This temperature distribution satisfies Laplace's 

equation, with the boundary condition which matches the thermal input 

with the losses by conduction to the interior and radiation to space. In 

terms of the radial coordinate r from the center of the cylinder and the 

angular coordinate ~ around the cylinder, measured from the sun-line, the 

temperature distribution is approximately given by 

1 

T (r, e) ( 
1 a J)4 1 aJ - - - + - -rcos¢ 
rre:o Zk 8.1 

where a is the absorptivity, e the 

x 103w;m2], o is Stefan's constant 

emissivity, J the solar input [1.37 
-8 2 4 

[5.67 x 10 w/m /(°K) ], and k is the 

thermal conductivity. Terms of higher order angular dependence do not 

contribute to the curvature. For a gray body whose absorptivity and 

emissivity are equal, the first term in 8.1 is 296°K. For a steel rod, 

k = 16 w/m/°K, r = .066 em, the second term is .028acos~, so even for a 

perfectly absorbing rod the variation in temperature around the rod is 

much less than O.l°K. 

The solution of the thermoelastic problem of the bending of a 

cylinder under thermal expansion is well known[30]. The curvature K 

produced in the cylinder due to the temperature distribution T is the 

same as the curvature induced in a long cylinder due to application of 

stress eET at the ends, where e is the coefficient of thermal expansion 

and E is Young's modulus. When the stress is calculated with the 

temperature distribution 1.1, the simple result from Ref. 26 for the 

curvature is 

K 
1 aeJ 
2T 

8.2 
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-5 
For a steel rod, the coefficient of expansion e is 1.8 x 10 /°K, so the 

curvature is 

K 
-4 

7. 7 x 10 a 
-1 

m 

and the radius of curvature RK' the reciprocal of the curvature, is 

1. 30/a km . 

8.3 

8.4 

It is apparent at this stage of the analysis that PACSAT is in 

trouble. The requirements on straightness indicate a radius of curvature 

of 50,000 km, which would necessitate an absorptivity of 2.6 x 10-5 

(.0026 percent) if the thermal radius of curvature 8.4 represents the 

actual curvature. This absorptivity appears to be beyond the current 

state of the art. We shall find the actual radius of curvature, and will 

show that it leads to an absorptivity requirement of .07 percent, which 

is also beyond the state of the art. 

Equation 8.2 gives the curvature when the rod is straight and the 

sunlight is perpendicular to the axis. When the rod is bent, and the sun 

is in some other direction, the curvature should be perpendicular to the 

slope, be in the plane containing the slope and the sun-line vector, be 

directed away from the sun, and be proportional to the cosine of the 

angle between the normal and the sun-line. These conditions are 

satisfied by the expression[6} 

~ 

K 
+ 

Kar 
as 

X (at X 

as 

+ 
where K is expression 8.2, arjas is 

line vector. We have used the unit 

) ~ l -+ Jr -+ ·cras-cr 8.5 

+ 
the slope, and o is the unit sun-

~ 

magnitude of ar;as. 
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The shadows cast by the spheres will shield portions of the rods 

from solar input. The configuration is shown in Fig. 11. The satellite 

is in equatorial circular orbit and is approximately radial. In 

equatorial coordinates, the slope is approximately 

I 
I 

t 

\ 
\ 

~ ~ 

i cose + i sine 
X y 

' \ 
\ 

""'". A ·~-·-~-_./7 
/ 

/ 
' 

Fig. 11 -Shadowing of rods by spheres 

8.6 
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+ 
while the sun-line vector a is 

+ + 
a = i cos8 

+ + i cosesin8 
X S y s 

+ + i simsin8 
z s 

where e is the inclination to the ecliptic (23.45 

solar longitude measured from Aries. Ellipticity 

deg) and 8 is 
s 

of the earth 1 s 

the 

orbit 

around the sun has been neglected.. The angle 13 of Fig. 11 is given by 

8. 7 

cosj3 
+ ar 

as 
+ 
cr cos8 cos8 + cosssin8 sin8 8.8 

s s 

With the length of the rod equal to £, and the radius of the sphere equal 

to r, it is easily seen that the length of the unshadowed part of the rod 

is given by 

£ = t - r(csc13 - 1) . 
u 

The radius of the rod has been ignored, so the shadow is regarded as 

going straight across the rod. For PACSAT, t = .685 em, r = .595 em, and 

for£ to be positive~ must be greater than 27.7 deg. Thus, during the 
u 

portions of the orbit when PACSAT is sufficiently close to being directly 

between th-e---earth and the sun, or for _thos.e _when PACSAT is n_e_a_r_ly 

opposite the sun, there will be no thermal bending effects. The 

opposition condition will put PACSAT into eclipse. If the altitude 

exceeds 1. 15 earth radii~ PACSAT will b-e in full internal s-hadow b-efore 

it goes into eclipse. We shall consider this condition only. 

The thermal curvature K is to be added to the mechanical curvature 

to form the strain energy. Thus, we have the new form for the strain 

energy 2.16: 



- 102 -

-Eifds -- + 1 [az;: 
2 as2 

8.9 

The vector J has a maximum variation L/R 5, the ratio of the satellite 

length to the distance to the sun. This is numerically 10-
8 , so 0 will 

be treated as independent of s. 

When the expression in brackets in 8.9 is squared (squared means the 

square of the magnitude), the square of the first term gives the previous 

r~sults. The square of the second term may be shown to be equivalent to 
-8 

a 10 relative change in the tension. For the cross-term, we may 

simplify, since the curvature is perpendicular to the slope, and obtain 

V' 
B 

z~ a r 
-EIKfds-

as2 

+ 
a 

forming the variation and integrating by parts, 

ov' 
B 

-EIK!ds~ • 

-EIK(~ • 
L 

a +[2 -or 
as L 

2 

~ a a 
- fds-as 

• -Or a +) 
as · 

8.10 

8.lla 

8.llb 

The second term is zero, since dis independent of s. Hence, the thermal 

curvature does not affect the differential equation 2.19. The first term 

in 8 .llb must be combined with the corn~sponding term in 2. 18. 

Consequently, we obtain the new boundary conditions: 
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+!: 
2+ 

At 8 r + 
s -2 -2 ~ Ka 

8s 
8.12a 

3+ a r D. 
8s 3 8.12b 

These equations still correspond to no bending or shearing at the ends. 

We see that there are no thermal bending effects on the libration. This 

is obvious anyway, since an induced curvature cannot to first order 

affect a rigid-body motion. 

Before proceeding to solve the vibration equations, we need an 

estimate of the validity of the use of the steady-state thermal theory. 

The thermal time constant of a sphere or rod is given by 

T 

2 c crr 
J'____ 

k 
8.13 

where c is the specific heat, o the volume density, r the radius of the 
p 

sphere or rod, and k the thermal conductivity. This expression gives for 

the aluminum sphere and the steel rod the values .3 sec and .1 sec. The 

vibratory motions and the rate of variation of the solar input both have 

time scales of many minutes, so the condition of steady-state temperature 

is well satisfied. 

Assume a circular equatorial orbit and form the equations of 

vibration. The complete rod participates in the bending, but only the 

unshadowed part experiences thermal input. Thus, when we introduce 

normalized variables, a factor involving£ should appear in the boundary 
u 

conditions, but not in the differential equation. The result for the 

in-plane vibration, analogous to 3.27, is 

~(1 
8x 

8.14a 
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2 

±1 
a "z 2 2 

at x 
Clx2 "" 

L (£u/'l Ko2 /4 Q 

3 
a "z 

0 --~ 

ax3 

where o
2 

is the component of the sun-line vector in the in-plane 

direction. We obtain readily 

o
2 

= -cos8 sinS + cos£sin8 cos8 
s s 

8.14b 

8.14c 

8.15 

Noting the definition of Q in 8.14b, we solve the system 8.14 by the 

trial form 

lox2 
- 1JQ + v . 

6 
8.16 

The first factor has been chosen to satisfy the boundary conditions 8.14b 

and 8.14c and to have vanishing average value. Hence, V will satisfy the 

homogeneous form of the boundary conditions 8.14. The differential 

equation for V becomes 

~(l ax 
x2)3V 

ax 

The solution may be expanded in the form 

v 

8.17 

8.18 
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which satisfies the boundary conditions, and leads to the differential 

equation for Vk: 

!_1 2 
+ 9Q) (3x - 1)Xk(x)dx . 

1 
8.19 

Let the effective solar input be expanded into the as yet unspecified set 

of frequencies v. by 
' 

Q LQ.sin(v.8 + 1/J~) • 
' ' " 

8.20 

Then the solution of 8.19 is 

V ~ -:![(1 
(3x2 

k 6 }_1 
8.21a 

When this solution is substituted into 8.18, and the result into 

8.16, the term in Q in the second bracket in 8.2lb leads to the 

cancellation of the first term in 8.16. The -1 in the integral does not 

contribute, since all Xk have vanishing average value. The numerical 

values of the integrals are found to be 

!_1 2 
X x

1 
(x)dX 

1 
.4216 

f_ 1 2 
x 'Sz (x)dx < • 0005 

1 

R.22a 

k > 1 • 8. 22b 
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Hence, the sum over kin 8.18 reduces to a single term. We have 

2 Since w
1 

= 9.00645, we see that the deflection is 

near 3. Hence, the input Q, which depends on the 

small unless v. is 
1 

orbital and solar 

8.23 

frequencies, should be expanded in Fourier series, and those terms near 

thrice orbital frequency retained. Thus, we represent the resonant part 

of Q in t=.he form 

LQ.sin(38 + i8 + $.) . 
1 s l 

8.24 
-00 

The calculation of the coefficients Q. is very laborious. They are 
l 

represented as double integrals, which must be expanded as slowly 

convergent series in the ratio sin2£jsin2a .733. Rather than 
max 

present the details, we simply give the result. Using the numerical 

value of K from 8.3 and L = 548 m, the deflection w
2 

is 

rin(38 - 38 ) (2.5078 + • 6058cos28 + .0374cos48 8)~ s s 

wz aX
1

(x) 

+ cos(38 - 38 ) ( .5509sin28 + .0469sin48
8

) 
s s 

8.25 

As mentioned at the end of Section III, the "throw" of x
1 

(x), that 

is, the difference between its maximum and minimum values, is 2.341. 

This enables us to define the deflection amplitude as 
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w aF(8 )sin[38 - 38 + >ce )] 
s s s 

8.26 

where F and tare the amplitude and phase of 2.341 times the bracketed 

expression in 8.25. We plot F(S ) and ~(9 ) in Fig. 12. 
s s 

They have a 

period of one-half year. As can be seen from the figure, f differs from 

zero by only about 14 deg, but F varies from about 7.5 mat the equinox 

to 4.5 m at the solstice. 

We see that if W is to be less than .5 em, a must be less than 

.0007. The excitation of the resonant mode is caused by shadowing~ which 

induces the third harmoni~ in o
2

. If there were no shadowing, the third 

harmonic would be produced by eclipsing. Incidentally, there is no 

resonant excitation in the out-of-plane motion. 
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Fig. 12 - Annual variation of thermal deflection 

W = aF (8 I sin [3 (8-8 I +<Pte 1] s s s 
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The requirement that a be less than .0007 is probably impossible 

with the current state of plating and coating materials. Silver plating 

achieves an a of only .1 (Refs. 27, 29). A fresh mirror surface, 

produced by evaporating silver on glass, has absorptivity of .01 - .02 

over the solar spectrum[31]. It is highly unlikely that this surface 

could be formed on a metal substrate, even with heroic polishing. 

It is possible to improve the situation somewhat by making the rod 

of Invar (34 percent Ni steel), the standard low-expansion material. 

Unfortunately, the curvature depends on the quotient of the expansion 

coefficient and the thermal conductivity, and these tend to vary in the 

s arne manner. For steel, e = 18 X 10- 6 
' k 16, and the quotient is 

1.1 X 10-6 . For Invar, e = 1.5 X 10-6 
' k 11, and the quotient is 

1.4 x 10-
7

, an improvement of about a factor of 9. This leaves a required 

~ of .006, still beyond the state of the art, and says nothing about the 

difficulty of working Invar. 

The use of plastic or ceramic materials would make matters worse. 

Their expansion coefficients are somewhat lower than metals, but their 

thermal conductivities are much lower. Data [ 32 J , with the necessary 

changes of units, show that for vinyl acetate rigid copolymer, 

e = 7 - 18 X 10- 6 
k = . 08, efk = 88 - 226 X 10- 6 

for phenolic plastics, ' ' 
e = 30 40 X 10- 6 

k = .09 - .16, e/k = 190 - 440 X 10-6 , and for glass ' 
e = .8 14 X 10-6 

k = . 05, ejk = 16 - 280 X 10-6 . All of these are ' 
considerably worse than steel. It appears that little can be done by 

choice of materials to improve the thermal bending situation. 

It appears from equation 8.26 and the numerical data that, under the 

best of circumstances, thermal bending will cause PACSAT to oscillate 

with a period of about 80 minutes and an amplitude of several 

centimeters, far too great for satisfactory communications. There may be 

some possible redesigns. If a thermal shield could be put around the 

rods, it might be possible to apply coatings in cascade to reduce the 

absorptivity. Also, if the satellite is built with flexible sections, so 

that the curvature is not maintained along the length, it would present a 

scalloped appearance and have a much smaller amplitude of oscillation. 

As was shown by Burke[ll], the "sticky hinges'' proposed by Stanfoid will 

not work for this purpose, since they will lock and allow the curvature 
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to propagate. The flexible portions must transmit the gravity-gradient 

tension, or the whole stabilization system will not function. The 

engineering of such concepts is beyond the scope of the present 

investigation (a euphemism for saying, "I don't know how"). 
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IX. CONCLUSIONS 

Although the analysis in this report has been quite lengthy, since 

there were many topics to cover, the conclusions are quite brief: 

1. The verticality and straightness conditions must be satisfied 

initially, which will be at least an extremely difficult 

deployment task. 

2. The major causes of flexure are micrometeoroid impacts and 

thermal bending. Micrometeoroid impact may produce excessive 

vibration at tens of days occurrence times. Thermal bending 

effects will excite resonant oscillations of large amplitude and 

are so severe that it is highly unlikely that they can be 

overcome. 

3. The flexural misbehavior of PACSAT in orbit is such that it is 

most improbable that the existing design of PACSAT can perform 

its communications function. 
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